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Golden section: applications in domain  
of landscape architecture 

 
Biljana Jović, Daniela Velichová, Milena Cvjetić 

 
 

Abstrakt 

Článok pojednáva o vzťahoch medzi 

prírodnými štruktúrami a zlatým rezom a 

analyzuje niekoľko príkladov aplikácií 

zlatého rezu v oblasti krajinnej architektúry. 

Prezentované sú výsledky výskumu týkajúce 

sa podstaty geometrickej konštrukcie zlatého 

rezu a predstavené sú niektoré ukážky 

aplikácií konštrukcie zlatého rezu pomocou 

prvkov vizuálnej estetiky v krajinnej 

architektúre, ktoré sú základnými prvkami 

kompozície. Cieľom tohto článku je 

systematizácia spomenutých prvkov 
z pohľadu využitia zlatého rezu a ich 
aplikácia na konkrétnych príkladoch  

z oblasti krajinnej architektúry. 

Kľúčové slová: zlatý rez, geometria, 

bionika, príroda, krajinná architektúra 

  Abstract 

This paper deals with the analysis of the 
relationship between natural structures and 
golden cross sections, and application of the 
golden cross section in the domain of 
landscape architecture. The aspects and 
research results shown in this paper are 
concerning the geometric construction of the 
golden section and its applications by the 
elements of visual aesthetics in landscape 
architecture as the basic elements of the 
composition. The aim of the paper is the 
systematization of elements from the aspect 
of using the golden section, as well as the 
application on concrete examples in domain 
of landscape architecture. 
Key words:  golden section, geometry, 
bionics, nature, landscape architecture 

1 The concept of a golden section and the number φ  

In the art of proportions, relations of size (lines, surfaces, shapes) are in one form, i.e. 
compositions. Proportions develop and affirm the unity of the whole. A good proportion means 
that each element of the composition is in a harmonic relationship. 

The basic task of the theory of proportions is to create visual work and balance. In order to 
satisfy our needs, humans have been producing, from ancient times, products and objects that, 
apart from function and purpose, must be in a certain dimension, above all in relation to man 
as their beneficiary. 

The only natural arithmetic proportion that could be obtained with just two elements is 
expressed by the following formula 

(a + b) : a = a : b 

In this dimension, the smaller size refers to the larger as the larger to the whole. Thus, the golden 
cross is the ratio of the quantities where the smaller part refers to the larger, as larger to the 
whole, or vice versa where the greater part refers to the smaller as well as the whole to the 
greater part. 
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The term "golden section" seems to be used for the first time in the year 1835 by German 
mathematician Martin Ohm (in German as goldener Schnitt or der golden Schnitt), in the second 
edition of his textbook Die Reine Elementar-Mathematik , as  quoted in [1] , p. 6. The first 
known use of this term in English can be found in the paper on aesthetics from the year 1875, 
written by James Sulleyand published in the 9th edition of the Encyclopedia Britannica. The 
symbol ("phi"), or sometimes , was used by Mark Barr at the beginning of the 20th century 
in commemoration of the Greek sculptor Phidias (about 490 - 430 BC), as a number of art 
historians claim that he made extensive use of the golden ratio in his masterpieces. 

Golden ratio has connections with various concepts in number arithmetic, such as the Euclidean 
algorithm for computing the greatest common divisor of two integers, or concept of continued 
fractions, and others. It is an irrational number, which can be calculated sequentially, as the 
ratio of two consecutive numbers of Fibonacci sequence: the bigger the pair of Fibonacci 
numbers has been chosen, the closer the approximation of golden ratio could be achieved. 
Fibonacci sequence is defined by an easy rule - the next number is found by adding up the two 
numbers before it, so starting with numbers 1 and 1, the few first Fibonacci numbers are 
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 144, 233, 377, … } and the sequence of the ratios of two 
consecutive numbers  

{1, 2, 1.5, 1.666, 1.6, 1.625, 1.6153, 1.619, 1.6176, … , 1.61805, 1.61802, … } 

is converging to the exact value of the golden mean.  
One particularly interesting property of the golden ratio is that it can be defined in terms of itself, 
which means  

𝜑 = 1 +
1

𝜑
 

and can be rewritten as quadratic equation 

𝜑2  – 𝜑 – 1 = 0 

with 2 real roots  

 𝜑1 =  
1+√5

2
     and    𝜑2 =  

1−√5

2
 . 

 
The positive solutions (ratio of two positive quantities) represents the simple formula to calculate 
the golden ratio value  

 𝜑 =  
1+√5

2
=  

1

2
+

√5

2
 

and reveals the clue how to extend the square to be a rectangle with the golden ratio. Here is one 
way how to draw such a rectangle (and line segment of the golden section length), see in Fig. 1:  

 Draw a square of size 1 of its sides. 

 Find centre S of one of its sides. 

 Draw a line segment from point S to the opposite vertex C of the square (it is √5/2 in 

length). 

 Revolve line segment SC about point S so that it coincides with the side AB of the 
square. 
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Fig. 1.  Construction of golden rectangle from a unit square 
 

Thus irrational number 𝜑  can be approximately estimated as 

𝜑 = 1.61803 = 1 + 0.61803 = 1 + 
1

1.61803
= 1 +

1

𝜑
   

The above formula can be expanded to the continued fraction 

𝜑 = 1 +
1

𝜑
= 1 +

1

1 +
1

1 +
1
𝜑

= 1 +
1

1 +
1

1 +
1

1 + ⋯

  . 

Pentagon, and pentagram - famous as a magical or holy symbol, are hiding the golden ratio. 
The ratio of the diagonal to the side of a regular pentagon is the Divine Proportion. Moreover, 
the diagonals create an isosceles triangle (where two of the three sides are equal) with angles 
of 72 degrees and 36 degrees. This triangle can be reproduced inside itself to infinity (in a "self-
developing" manner), as shown in Fig. 2: 
 

 
 

Fig. 2.  Regular pentagon, and pentagram 
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The construction of line, triangle, rectangle, pentagram and, at the end, logarithmic spiral 
(golden spiral) in accordance with the golden ratio rules, forms the most harmonic shapes found 
in nature (Fig. 3).  
 

Fig. 3.  Construction of the logarithmic spiral in the golden rectangle  
[http://mathworld.wolfram.com/GoldenRectangle.html] 

 
 

1.1 Golden ratio in nature and art 

 
 
1.1.1 Golden ratio in nature 

The structure of DNA molecule is in the ratio of the golden cross section. The pulse of a man's 
heart, shown on the ECG footage, is also in the same relation. 

In nature, the phenomenon of distribution of leafs on the plant could be seen governed by the 
rule of Fibonacci series called phyllotaxis (from Ancient Greek phýllon – leaf and taxis -
position). It occurs in plant species such as american linden, beech, hazelnut, oak, apricot, 
poplar, pear, willow, almond, etc. 

Phyllotaxis is the simplest way of distributing leafs evenly on the plant, where each leaf surface 
receives a sufficient amount of light from the least occupied space. Also, the arrangement of 
branches in many species takes place according to Fibonacci’s series of numbers [8]. 

In addition to this, the germ’s - germination process, from the soil, has the shape of the golden 
spiral. The blooming sunflower and many other plants from the Asteraceae family contain a 
golden spiral. In addition to them, they could be seen on some of the pines, fruits of broccoli, 
pineapples, etc. A large number of flowers have a number of petals that correspond to 
Fibonacci’s numbers as iris or lily, and most flowers have 5 petals (violet, tulips, etc.). The 
rings of growth on some palm trees form a golden spiral.  

Beside in flora, the golden cross section is very present in the animal kingdom also. The ratio 
of females and males in the bee hive is equal to the number φ. Many shells of snails, especially 

nautilus, have the shape of a golden spiral (Fig. 2). Relations of body parts of many animals are 
found in the golden cross section [8]. 
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Fig. 4.  Golden section in the nautilus shell and example of flower with 5 petals 
[https://www.flowersforums.com/please-identify-this-pink-5-petal-flower-found-growing-

near-water-in-southw...-34786.html   
http://www.photoshoptutorialsandtips.com/wp-

content/uploads/2010/10/nautilus_withoverlay.jpg] 

Concerning human proportions, the most well-known proportional marking of a human body 
can be found in Leonardo da Vinci’s study called "Homo Vitruvius" (The Vitruvius Man). In 

the 20th century, French architect Le Corbusier, in 1945, introduced the theory and practice of 
the golden-cross-section proportions applied to man as well as the modular system - Modulor.  

 
 

1.1.2 Golden ratio in art 

The golden section was used in the art since the age of Ancient Egypt, and it could be further 
found in every sphere of art and every art epoch. 

 

         

      a)                                     b) 

Fig. 5. a) "Composition II RBY", Mondrian, b)"Composition II RBY", Mondrian 
[http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio/ 

golden.html] 



Biljana Jović, Daniela Velichová, Milena Cvjetić 

 

 

10 G – slovenský časopis pre geometriu a grafiku, ročník 15 (2018), číslo 30, s. 5 – 18 

 

In addition to Leonardo da Vinci, the artist whose works are a clear association with the golden 
section is definitely Pit Mondrian, who developed the direction in abstract art – Neoplasticism 
[2]. The base of the image is white, and there are black straight lines over it, sometimes filled 
with only three basic colours: red, blue and yellow. By using basic colours and simplest shapes, 
Mondrian emphasizes that any shape could be created using basic geometric shapes and that 
any colour can be obtained by using combination of  these three basic colours Mondrian claimed 
that painting and geometry are inextricably linked as well as the nature and Neoplasticism, see 
Fig. 5. One of the most commonly used forms in his paintings is a gold rectangle [2]. 

 
 

1.1.3 Golden ratio in architecture 

The application of the golden section in architecture is reflected in works that remained as a 
cultural and historical heritage, starting from the Pyramid in Giza, to modern architectural 
objects. The theory of architecture explains the beginnings, but also the development of the 
theory of golden cross-section through the anthropometric understanding of architecture [4]. 

In the 19th century, Ernest Neufert deals in detail with the golden section as an architectural 
proportional system, referring to historical heritage. Together with Cajsing, they are considered 
to be the greatest advocates of anthropometric architecture [5]. In the 20th century, the French 
architect Le Corbusier did not see the application of the golden section in architecture as 
"natural rhythm" in proportion, but in the design organization, the façade, in particular, see in 
Fig. 6 b), [5]. 

 

        

a)                                                    b) 
 

Fig. 6.  a)  Facade of the United Nations Building in New York, divided into three gold 
rectangles, Le Corbusier 
[https://es.wikiarquitectura.com/sede_de_la_onu_ny_4/] 

b) "Modulor", Le Corbusier 
[http://www.fondationlecorbusier.fr/corbuweb/morpheus.] 
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The most important Le Courbusier’s work is Modulor, a system of proportions of a man in 

a golden cross section, representing a modern interpretation of "Homo Vitruvius", including 
certain examples of proportions in architecture,  Fig. 6b). The proportions of the golden section 
and the continuous division of Le Courbusier emphasizes using three basic colors, similar to 
Mondrian [5]. 

 
2 Bionics 

Bionics is a young scientific discipline, which got its name from the Greek word βίος, meanings 
element of life. The essence of the bionic approach is the study of biological methods and 
systems that are in nature in order to apply this knowledge in design, or in the tasks of modern 
engineering technology [6]. 

What Nature has created represents most commonly the most practical, the most ideal and the 
most economical solutions, which gave the engineers the idea to use them in solving 
increasingly complex problems [3]. 

The practical realization of the bionic approach takes place on three levels, i.e. there are three 
methodologies within the bionics: biological, mathematical and technical. 

Biological bionics uses knowledge most commonly in medicine, botany and zoology to extract 
the principles of the functioning of the observed organisms, which can establish a link to the 
technical problem that engineers find. Then the mathematical approach to processing this 
biological content, so-called biological modelling, where mathematical models represent a 
faithful copy of the biological content or process that is vital to the problem posed. Finally, 
technical bionics aims to provide technical realization and practical application of the 
mathematical model [7]. 

One of the first serious papers on the bionic approach is the book On Growth Of Form, revised 
in 1917 by English biologist Darsy Wentworth Thompson. In this book, Thomson expresses 
the bold claim that the organic world is equally "mathematically" as well as non-organic. 
Thomson saw the hidden mathematical basis and assumed that the geometric, or mathematical 
principles on which the organic world functions, really exist. Namely, in his book, he has 
devoted the entire chapter to numerous examples of geometric laws that appear in the plant 
world. By studying the botanical world, he noticed the appearance of Fibonacci numbers in the 
schedule, as well as in number, round and cup leaves, leaves, branches. He also studied the 
appearance of a logarithmic spiral and a proportional division in the animal world. On the basis 
of numerology and geometry, which is obviously present in the living world, Thompson made 
conclusions and rejected the possibility of a random presence of mathematical relations and 
principles in the living world [8]. 

Nowadays, biomimetics could be the most appropriate term used in landscape architecture as 
well as domain in architecture and civil engineering. Biomimetics is a rich design tool that 
interprets the natural processes and forms transferring them to the artificial creations according 
to Gruber [9]. Biomimetic approach does not separate fixed entities like form, function, 
structure and material, but unites them, and is defined as a semi-organic composition. By 
copying natural models, applying geometric principles and biological knowledge, it is possible 
to produce spatial structures that are stratified, variable, and connected [10]. 
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2.1 Examples of the golden section in the landscape architecture 

The most famous examples of using golden section in domain of landscape architecture follows. 
Ma Wan Park is a park on Ma Wan Island (Ma Wan, New Territories, Hong Kong), the main 
entrance to Ma Wan Park is the Golden Mean Plaza. The architect of this square intended to 
express harmony between nature and human creation. Fig. 7a), [11]. 

Eastwoodhill arboretum (Gisborne, New Zealand) is the national arboretum of New Zealand. 
The Fibonacci spiral, which is located as one spatial entity in this arboretum, is a memorial to 
H. B Williams, a man in charge of the existence of this arboretum, Fig.7b), [12]. 
 

 a)                                                                                  b) 
Fig. 7.  a) Nautilus shell sculpture  – Ma Wan park 

[https://upload./wikimedia/commons/c/c9/Ma_Wan_Park_Gold_Mean_Plaza.jpg] 

 b) Fibonacci spiral in garden  
[http://www.eastwoodhill.org.nz/assets/Education/Fib-Spiral.jpg] 

 

 
   a)      b) 

 
Fig.  8 a) The California Polytechnic State University-Engineering Plaza 

[http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibInArt.html#parthenon] 
   b) Using third-party Golden section rules in the parterre, Villandry Castle, 

France [http://www.fluidr.com/photos/guilminou/7297407762] 
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California Polytechnic State University - Engeneering Plaza -the geometric shapes used are 
gold spiral and gold triangle and gold rectangle, Fig. 8a). Apart from geometric, this is also an 
excellent example of the use of the golden section in a symbolic meaning, bearing in mind the 
scientific character of the faculty, [13]. 

The use of the gold cross-section in the formation of a parterre could be found in the 
Renaissance, and especially in the French Baroque Gardens, see Fig. 8b). 

 
 

 
 

Fig. 9.  Orpheus project – Pyramid and inverse pyramid relationship  
 [https://www.kimwilkie.com/uk/orpheus-at-boughton/] 

 

Boughton house and Orpheus project – Boughton is an English formal garden, formed 
between 1685 and 1725. It is one of the rare examples of geometric garden in Britain, Fig. 9. 

The Orpheus project is a modern addition to the garden, designed by architect Kim Wilkie. 
Analysing the geometry of this garden, author of the project noticed the use of proportions of 
the golden section in the composition, and decided to use it in the design of new contents [14]. 
 

 

2.2 Visual – aesthetic elements in landscape design 

The composition of certain space could be well perceived by understanding the elements and 
principles of visual aesthetics. As the process for landscape design in this paper research is done 
from geometric point of view. The basic visual-aesthetic elements that are analysed are: point, 
line, shape and size [15]. 
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The examples – design concepts of atrium gardens of arbitrary dimensions, foreseen in the 
ambiance of the business-commercial complex, are presented in two variants with the use of 
golden section (Fig. 10 and Fig. 11). 

 

   
a)        b) 

Fig. 10.  Top view a) Atrium no. 1 – symmetry, b) Atrium no. 2 – asymmetry design concept 

 

  

a)                                               b) 

Fig. 11.  3D model a) Atrium no. 1 – symmetry, b) Atrium no. 2 – asymmetry  
 

 
 

2.2.1 Point  

The application of the golden section in landscape architecture can be achieved through focal 
points, whether they are used as a measure of symmetry or asymmetry in the space. 
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a)                                   b) 

 

Fig. 12.  Focal points a) Atrium no. 1 – symmetry, b) Atrium no. 2 – asymmetry 

Atrium number 1 (Fig. 12 a)) is designed according to the pattern of the golden section known 
as the "eyes of the rectangle". In this case, the focal points are four bonsai trees of black pine, 
raised in build planters. They form elements of a spatial composition, retaining its symmetry 
and harmony.  

Atrium number 2 (Fig. 12 b)) for example has one of the famous Mondrian’s compositions 
"Red, Yellow, Blue". The center is displaced, but the harmony of the asymmetric composition 
is achieved using a golden section. The center of the painting composition is represented in the 
space by a raised planter with a tree. The point becomes the center of visual gravity, both 
horizontally and vertically. 

 
 

2.2.2 The line 

In landscape architecture, line items could be considered as line elements, such as paths, alley, 
live fences, borders, walls, channels, paving slabs, etc., as long as their role implies one 
direction – one line [16]. 

 

          

a) b) 
 

Fig. 13.  Line composition a) Atrium no. 1 – symmetry and b) Atrium no. 2 – asymmetry  
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In example of atrium no. 1 (Fig. 13 a)), lines represent the boundaries of different surfaces –
stone, wood, water, which are in the same vertical plane. In example of atrium no. 2 (Fig. 13 b)), 
lines represent change in paving materials, making the geometric network the basis of the 
composition, defining the space and directions of movement. 
 
 
2.2.3 Shape (surface) 

The shape is one of the basic elements of the architectural composition. The three basic types 
of shapes are geometric, natural, and abstract. Golden rule can be applied in every one of them. 
Given the spatial perception of shapes in landscape architecture, the golden rule should be 
applied to the geometric compositions in the horizontal plane that could be seen and understood 
by users of space [16]. 

 

       
a)    b) 

 
Fig. 14.  Geometric shapes: a) Atrium no. 1 – symmetry and b) Atrium no. 2 – asymmetry 

As illustrated in the example of atrium (Fig. 14), this is most easily achieved by various shifts 
in paving materials, colours, or in the composition of the parterre surfaces. 

In the case of atrium number (Fig. 14a)), positioning the four points in the space creates the 
impression of the golden rectangle. Parterre represents a network of triangles, which does not 
define a contour, but different materials that fills them. 

In the case of atrium no. 2 (Fig. 14b)) the paving lines divide the space on a series of golden 
rectangles, which are clearly visible and recognizable to users. 
 
 
2.2.4 Size 

Finally, the ratio of the sizes between the individual elements is proportion, and the systematic 
care of relations is one of the principles of visual aesthetics [16]. 

 
 

3 Discussion 

In this paper, The Golden section is considered from the standpoint of several disciplines: 
geometry, art, architecture, biomimetics and landscape architecture. An important feature of the 
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golden section is its ability to be applied both in plane and in space and in symmetry and 
asymmetry, especially as element of balance into asymmetric compositions. This biomimetric 
approach to the design process could serve as an example of a new aspect of the use of geometry 
in landscape architecture. 

The paper deals with the geometric analysis of the composition in the plane, but there are 
numerous examples of the use of golden section in space: with plants, garden and architectural 
elements. The aspect of using the golden section in landscape architecture requires much more 
extensive research, which goes beyond the scope of this paper, and leads us to direction of 
further more detailed researching that starts from this point. 
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Teaching calculus with Maria Gaetana Agnesi 
 

Paola Magnaghi-Delfino, Tullia Norando 
 

 

Abstrakt 

V roku 2018 uplynulo tristo rokov od 
narodenia Márie Gaetany Agnesi, 

matematičky a dobrodinky, ktorá sa narodila 

v Miláne (v Taliansku). Preskúmali sme 

Analytické inštitúcie, hlavné dielo Márie 

Gaetany, ktoré venovala vzdelávaniu 

študentov. Sme presvedčení, že študenti si 

pred začatím štúdia na vysokej škole môžu 

osvojiť základné matematické pojmy 

diferenciálneho počtu pomocou metód a  ídeí 
navrhnutých v tejto knihe datujúcej sa do 
odobia zrodu analýzy. Stačilo by využiť 

niektoré z množstva návrhov a príkladov 

obsiahnutých v knihe od Agnesi [1]. 
Kľúčové slová: dejiny matematiky, 
cykloida, versiéra, Mária Gaetana Agnesi 

  Abstract 

In 2018, we celebrated the three hundredth 
anniversary of the birth of Maria Gaetana 
Agnesi, mathematician and benefactress, 
born in Milan (Italy). We have examined the 
Analytical Institutions, the main work of 
Maria Gaetana, that she dedicated to 
students’ education. We think that pre-
university students can acquire the 
fundamental mathematical ideas in 
Differential Calculus using methods and 
ideas proposed in the books that go back to 
the origins of the Analysis. From this point 
of view, we can use many suggestions and 
examples, contained in Agnesi’s Books [1].  
Key words: history of mathematics, 
cycloid, versiera, Maria Gaetana Agnesi 

 
 

To the first woman in the Western world to have achieved a reputation in mathematics 

Maria Gaetana Agnesi (1718 – 1799) 
 
 
 
1 Introduction 
 
The seventeenth century is one of the most exciting periods in the history of mathematics. The 
first half of the century saw the invention of the analytic geometry and the discovery of new 
methods for finding tangents, areas and volumes. These results set the stage for the development 
of the calculus during the second half of the century. The plane curves, both those known from 
antiquity and those discovered in recent times, played a central role and were used by nearly 
every mathematician of the time as examples for demonstrating new techniques. We must 
remember that the concept of function is a discovery of the nineteenth century, whereby the 
known curves were defined in a geometric or mechanical way. Among these curves, the cycloid 
had a particular role in the solution of two important problems: to find the fastest path between 
two positions and to build a more reliable watch. 
 
The cycloid is the curve traced out by a point on the circumference of a circle, called the 
generating circle, which rolls along a straight line without slipping. Galileo originated the 
term cycloid and was the first to make a serious study of the curve, despite the fact that some 
mathematical historians argue that the curve was known since antiquity [11]. 
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Scientific discoveries were only known through the reading of the very few scientific journals, 
all in Latin, or through epistolary contacts. The new science spread in scientific circles and, 
while arousing much curiosity, it was only heritage of scientists.  
 
In the mid-18th century, Paris became the centre of an explosion of philosophic and scientific 
activity challenging traditional doctrines and dogmas. Voltaire and Jean-Jacques Rousseau led 
the philosophic movement. They argued for a society based upon reason rather than Faith and 
Catholic doctrine, for a new civil order based on natural law and for science based on 
experiments and observation. During the Enlightenment, Science was dominated by scientific 
societies and academies, which had largely replaced universities as centres of scientific research 
and development; societies and academies were also the backbone of the maturation of the 
scientific profession. Many women played an essential part in the French Enlightenment, due 
to the role they played as salonnières in Parisian salons, as the contrast to the male Philosophes.  
 
Developments in the Industrial Revolution allowed consumer goods to be produced in greater 
quantities at lower prices, encouraging the spread of books, pamphlets, newspapers and 
journals. An important development of the Enlightenment was the popularization of science 
among an increasingly literate population. Les Philosophes introduced the public to many 
scientific theories, most notably through the Encyclopédie and the popularization 
of Newtonianism by Voltaire and Émilie du Châtelet.  
 
Sir Isaac Newton's celebrated Philosophiae Naturalis Principia Mathematica was published in 
Latin and remained inaccessible to readers without education in the classics until Enlightenment 
writers began to translate and analyse it [21]. 
 
The first French introduction to Newtonianism and the Principia was the book Eléments de la 

philosophie de Newton, published by Voltaire in 1738. Émilie du Châtelet’s translation of 
the Principia, published after her death in 1756, also helped to spread Newton’s theories beyond 
scientific academies and the university.  
 
The Enlightenment played a distinctive, but still rather small, role in the history of Italy. Maria 
Gaetana Agnesi, born in Milan by a wealthy and literate family, was profoundly interested in 
mathematics but still unclear about the nature of her possible contribution. Agnesi began by 
planning a commentary on Guillame de l’Hospital’s treatise on curves, to make it more 

accessible to students. Gradually, however, she came to believe she could work on a much more 
ambitious project: an introduction to calculus that would guide the beginner from the rudiments 
of algebra to the new differential and integral techniques. This would be a great work of 
synthesis, aiming at a clear presentation of materials that were written for specialists, in Latin, 
French, or German, and published in hard-to-find journals.  
 
Agnesi’s geometrical style, which originated in her essentially geometrical understanding of 

algebra and calculus, was in marked disagreement with leading practitioners. 
 
This explains, among other things, her interest in Newton’s fluxions, and the ease with which 

her work was translated into English for a British audience. At a time when the practice of 
calculus on the continent was moving away from its immediate geometrical meaning, Agnesi 
aimed to rediscover those techniques of Cartesian geometry designed to bridge the gap between 
the two fields.  
 

https://en.wikipedia.org/wiki/Jean-Jacques_Rousseau
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In the second volume of her treatise Instituzioni Analitiche (Analytical Institutions) [1],  Maria 
Gaetana studied many curves, and cycloid in particular, using both points of view: the geometric 
and the differential method. 

 
 

2 Cycloid: what was known about it 
 

The problem of finding a tangent to a curve was one of the main reasons, together with the 
problem of instantaneous speed and acceleration, the problem of maxima and minima and that 
of the length of the curves and the measurement of areas delimited by curves, which led to the 
invention of the infinitesimal calculus. 
 
Finding the tangent to a curve was a geometric problem, which had great importance also for 
its scientific applications: for the optics and for the study of trajectories, topics of extreme 
interest in the eighteenth century. The same meaning of a tangent was then an open question 
because the definition of tangent given to conics was inadequate for the more complicated 
curves, already in use at the time. 
 
Numerous methods were proposed to trace the tangent to a curve. Gilles Personne de Roberval 
(1602-1675) in his Traité des indivisibiles of 1634 (published only in 1693) generalized a 
method that Archimedes used to find the tangent at every point of the spiral. Roberval imagined 
the curve as the locus of a point moving under the action of two velocities, horizontal and 
vertical, and considered as tangent in P the line on which lies the resulting diagonal of these 
two velocities; Torricelli noted that this method used a principle already enunciated by Galileo 
and Torricelli himself then used it to find the tangent curves of the y = xn type. This definition 
of a tangent was applied to many problems and was remarkable because it linked geometry to 
dynamics; but it was questionable from the mathematical point of view because, based on 
physical concepts, it could not apply to those situations that had nothing to do with motion. 
Therefore, other methods were acquired, including that of Fermat, invented before 1629 and 
found in his manuscript of 1637 Methodus ad disquirendam maximam et minimam. Fermat’s 

method consisted of finding the length of the subtangent to go back up to the point of 
intersection with the axis and then to the tangent. 
 
The cycloid was one of the curves that played a central role and were used by nearly every 
mathematician of the seventeenth century as examples for demonstrating new techniques. On 
1638, in the book Discorsi e dimostrazioni matematiche [11], Galileo Galilei had shown a series 
of results that can be related to the problem of the brachistochrone. Constructing the tangent of 
the cycloid dates back to August 1638, when Marin Mersenne received methods from Gilles de 
Roberval, Pierre de Fermat and René Descartes. Mersenne passed these results along to Galileo, 
who gave them to his students Torricelli and Viviani, who were able to produce a quadrature. 
In 1644, Torricelli published this result and others in the first printed work on the cycloid.  
 
In 1657, the Dutch mathematician Christiaan Huygens was thinking about how to make a more 
accurate clock [16]. Mersenne suggested using a pendulum as a timing device, but Huygens 
knew that the period of a circular pendulum is not independent of its amplitude and he wrote 
[25, p. 71]: In a simple pendulum the swings that are elongated more from the perpendicular 

are slower than the others. And so in order to correct this defect at first I suspended the 

pendulum between two curved plates…, which by experiment I learned in what way and how to 

bend in order to equalize the larger and smaller swings. 
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What Huygens did was to place nails in the path of a pendulum made with a flexible cord. The 
nails altered the path of the bob so that it followed a sequence of circular arcs. By trial and error, 
he was able to construct a system whose period was independent of its amplitude. To force the 
bob to travel along a smooth rather than piecewise path, he replaced the nails with a pair of 
curved plates. Inspired by Pascal’s contest, he noticed that the bob of his curved plate pendulum 
appeared to follow a cycloid. He was able to show that the frequency of an object forced to 
follow an inverted cycloid is independent of its amplitude.  
 
Thus Huygens proved that the cycloid is the tautochrone: the curve for which the time taken by 
a particle, freely accelerated by gravity, to reach the lowest point on the curve is the same 
regardless of its starting point. Huygens published this result in 1673, in his book De Horologio 

Oscillatorio [16]. 
 
On May 1697, in the Acta Eruditorum appeared the solutions of the brachistochrone problem 
done by Johann and Jacob Bernoulli, together with a note by Leibniz, while Newton had 
published his solution anonymously on the Philosophical Transactions. They proved that the 
cycloid is the brachistochrone. 
 
 
3 The cycloid in mathematical popularization 
 
Les Philosophes introduced the public to many scientific theories, most notably through 
the Encyclopédie and the popularization of  Newtonianism by Voltaire and Émilie du Châtelet. 

Some works are more formal and include explanations of scientific theories for individuals 
lacking the educational background to comprehend the original scientific text.  
 
The first significant work that expressed scientific theory and knowledge expressly for the laity, 
in the vernacular and with the entertainment of readers in mind, was Bernard de 
Fontenelle’s Conversations on the Plurality of Worlds (1686) [5]. The book was produced 
specifically for women with an interest in scientific writing and it inspired a variety of similar 
works. These popular works were written in a discursive style, which was laid out much more 
clearly for the reader than the complicated articles, treatises and books published by the 
academies and scientists. Noted examples of this popular new genre include Francesco 
Algarotti’s Newtonianism for Ladies (Il Newtonianismo per le dame, 1737), which was the most 
popular work, and it was translated into English by Elizabeth Carter. 
 
In the Émilie du Châtelet’s treatise The Institutes of Philosophy, published in Paris in 1738, the 
Cycloid is presented in Chapter XVIII:  De l’Oscillation des Pendules in this way: 
This curve which is very famous among the Geometry by the number and singularity of its 

properties, is formed with the revolution of one point of a circle, whose entire circumference 

subsequently touches a straight line .... The wheels of a carriage turning describe the cycloids 

in the air. 

 

Émilie du Châtelet, after having described its principal properties, underlines the solution of the 
brachistochrone problem given by Johann Bernoulli with the dioptric method. 
 
In the Analytical Institutions, Book II, Example, Maria Gaetana gave the geometric definition 
of the cycloid, and then she explained how to obtain, by differential calculation methods, the 
formula for calculating the subtangent in two different ways, and other properties. 
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4 The cycloid in Maria Gaetana Agnesi’s book 
 

In the book II of the Instituzioni Analitiche we find the following definition of the cycloid. 
 
Definition: While the circle DPC revolves uniformly upon the right line AB, beginning at the 
point A, the point C of its periphery, which at the beginning of the motion fell upon in A, leaves 
an impression in the plane of its motion that continues till the point C arrives again at the right 
line AB. It will describe a curve ACB, which, from its generation, is called a Cycloid [6].  

 

 
Fig. 1 

 
It will be the ordinary cycloid, when the circle moves upon the right line AB, as that it shall 
measure out the whole exactly by it’s periphery, after that the point C shall have passed from 
A to B, so that AB may be equal to the periphery of the same circle. It will be a prolonged 
cycloid when the motion is such, that the right line AB is longer than the periphery of the circle; 
and a contracted cycloid when the same AB is shorter than the periphery. 
 
From the description of this curve it plainly follows, that, drawing from any point the right line 
MQ parallel to AB, the intercepted line MP, between the curve and the circle CPD, will have 
the same ratio to the arc CP as the line AB has to the circumference of the whole circle. 
 
Suppose the generating circle to be in the two positions EMF, DPC; draw the chords ME, PD. 
Now, because the arcs EM, DP, are equal, the chords EM, DP, will be equal and parallel, and 
therefore MP = ED. But, by the nature of the curve, it is  

 
AE : EM = AD : EMF = AB : EMFE 

 
and in the same ratio is also ED : MF. And MF = PC, ED = MP; therefore, it will be 

 
MP : PC = AD : EMF = AB : EMFE 

 
Therefore, if we call the right line AB = a, the periphery of the generating circle EMFE = b, 
and any arc or abscissa CP = x, the ordinate PM = y, the equation of the curve of the cycloid 
will be  

x = by/a. 
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Having therefore the equation of the curve, in order to find the subtangent, its fluxion will be 
( ) / ;dx bdy a  and, instead of dx, substituting this value in the formula ( / ,ydx dy  it will be 

PT ( ) /by a x  . Therefore, taking, on the tangent to the circle, PK, (Fig. 2) which is supposed 
to be drawn, a portion PT equal to the arc of the circle AP, and drawing the right line TM to the 
point M, it shall be a tangent to the cycloid at the point M.  

 

 
Fig. 2 

 
Now, besides, if the cycloid be the ordinary one; because, in this case, we shall have b = a, and 
therefore y = x, it will be PM = PT, and the angle PTM = PMT. But the external angle TPQ is 
double to the angle TMP, and the angles TPA, APQ are equal, (Euclid, Elements, III, 29 and 
32), therefore the angle APQ will be equal to the angle TMP, and therefore the tangent MT is 
parallel to the chord PA. 
 
Without the assistance of the tangent to the curve, we may have the subtangent of the curve 
AM, taking it in the axis KAB.  
 
Make AQ = x, QP = y, the arc AP = s, QM = z, and let the relation of the arc AP to the ordinate 
QM be expressed by any equation whatever.  
 
Let qm be infinitely near to QM, and MS parallel to AB. It will be MS = dx, Sm = dz, and the 
similar triangles mSM, MQN, will give us  

 
dz : dx = z : QN = (zdx)/dz 

 

a formula for the subtangent. 
 
Instead of taking for the ordinate QM = z, if we take PM = u; drawing MR parallel to the little 
arc Pp, it will be 
 

mR = du, RS = pa = dy 
 
and therefore 
 

S .m du dy   
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And the similar triangles mSM, MQN, will give us  

 

 ( )
: :QN QN

u y dx
du dy x u y

du dy


    


 

 
which is another formula for the subtangent [6]. 
 
 
5 The evolute of the cycloid 
 
In the Analytical Institutions, Book II, Example VIII, Maria Gaetana determined, with methods 
of differential calculus, the evolute of the cycloid. 
 

 

 
Fig. 3 

 
Let the curve ABD be half of the common cycloid, the equation of which is 

 
2a x

dy dx
x


  

 
making AC = 2a, AP = x, PB = y. By differencing, and taking dx for constant, it will be 

 
2

2

adx
ddy

x ax xx





 

 
and substituting these values in the formula for the radius of curvature 
 

2 2 3/ 2( )dx dy

dxddy




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it will be BQ 2 4 2aa ax  . 
 
But the normal BG 4 2aa ax   which is equal to the chord EC. Therefore, the radius of 
curvature BQ = 2BG = 2EC.   
 
Making x = 0, to have the radius of curvature at the point A, it will be BQ = AN = 4a, and 
therefore CN = CA = 2a. 
 
Making x = 2a, the radius of curvature at the point D will be zero, and therefore the evolute 
begins in D, and terminates in N. 
 
Because the tangent to the cycloid at B is parallel to the chord EA, the normal BQ will be 
parallel to the chord EC. This supposed, complete the rectangle DCNS and with the diameter 
DS = CN= AC describe the semicircle DIS and draw the chord DI parallel to BQ or to EC. The 
angles CDI, DCE, will be equal, and consequently the arcs DI, CE, and their chords. Therefore, 
DI, GQ are equal and parallel; and drawing IQ, it will be equal and parallel to DG. But, by the 
property of the cycloid, DG is equal to the arc EC, and therefore to the arc DI. Then the arc 
DI = IQ, and the semicircle DIS = SN, whence the evolute DQN is the same cycloid, DBA, in 
an inverted situation. 

 
 

6 The area subtended by a cycloid arc 
 
In the Analytical Institutions, Book III, Example VIII, Maria Gaetana determines, with 
differential calculation methods, the area subtended by a cycloid arc. 

 

 
 

Fig. 4 
 

Let NAM be a cycloid, its generating circle ARH, and make AH = a, AB = x, BC = dx,  
BE = y, DF = dy.  
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The equation will be 
 

adx xdx dx a x
dy

ax xx x

 
 


. 

 
But the little space QEFP is the element of the space AEQ and therefore FP × PQ that is,  
 

xdx a x
dx ax xx

x


   

 
will be its formula.  
 
But dx ax xx  is the circular segment ASB; therefore the cycloidal space AEQ will be equal 
to the correspondent circular space ASB and the whole space AMK will be equal to the 
semicircle. The rectangle AHMK is quadruple of the semicircle, because it is the product of the 
semiperiphery into the diameter. Therefore, the space AMH will be triple of the semicircle, and 
therefore the whole cycloidal space will be triple of the generating circle. 
 
If we would have the space AFC immediately; as the little space FCBE, that is, ydx, is its 
element, and from the equation of the curve we have 
 

dx a x
dy

x


  . 

 
Let the homogeneum comparationis be reduced into a series, first multiplying the numerator 
and denominator by  √𝑥; whence it would be 
 

1 1 3 5

2 2 2 2

1 1 3 5

2 2 2 22 8 16

dx ax xx a dx x dx x dx x dx
dy

x
x a a a


       

 
and therefore, by integration, 
 

3 5 7
1 1 2 2 2
2 2

1 3 5

2 2 2

2

3 20 56

dx ax xx x dx x dx x dx
a x

x
a a a


      

 
whence 
 

3 5 7
1 1 2 2 2
2 2

1 3 5

2 2 2

2

3 20 56

x dx x dx x dx
ydx a x dx dx dx dx

a a a

      

 
and, by integration, [6] 
 

5 7 9
1 3 2 2 2
2 2

1 3 5

2 2 2

4 2

3 15
70 252

x dx x dx x dx
ydx ABE a x dx dx dx dx

a a a

       
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7 The length of a cycloid arc 
 
Subsequently in the Analytical Institutions, Book III, Example XXII, Maria Gaetana determines, 
with differential calculation methods, the length of the cycloid arc. 
 
Let it be the cycloid of the Example VIII of Quadratures, the equation of which we know to be  
 

dx a x
dy

x


  . 

 
Therefore, the formula will be 
 

2 2 dx a
dx dy

x
   

 

and therefore, by integration, it will be the arc EA 2 ax  , or the double of the chord AS of 
the corresponding circular arc AS. Taking x = a, AM will be the double of the diameter of the 
generating circle, and therefore the whole cycloid will be quadruple [6]. 
 
 
8 The witch of Agnesi 
 
When Maria Gaetana was 34 years old, put mathematics aside and turned to charitable work 
among the poor and sick, she always would dedicate her life. She gave her net worth to the poor 
and she retired in the Pio Albergo Trivulzio, the poorhouse founded in Milan by the Prince 
Antonio Tolomeo Trivulzio.  
 
Among the mathematicians, Maria Gaetana is known for having studied a curve, which, in the 
Anglo-Saxon world, is known as a witch of Agnesi. A woman so pious, why should she have 
given the name "witch" to a curve she had studied? 
 
The name "witch" derives from a mistranslation of the term versiera ("versed sine curve") in 
the original work as avversiera ("witch" or "wife of the devil") in an 1801 translation of the 
Analytical Institutions by Cambridge Lucasian Professor of Mathematics John Colson [6]. 
 
The name, however, appears for the first time in the Note al Trattato del Galileo del moto 

naturalmente accelerato (Notes to the Galileo’s Treaty of the naturally accelerated motion, 

1718) written by the famous Italian mathematician Guido Grandi. In this paper, we read that 
the name versiera, in Latin versoria, derives from sinus versus that is the trigonometric 
function already appearing in some of the earliest trigonometric tables. The versed sine of an 
angle equals one minus its cosine [15]. 
 
The curve was obtained for the first time from Guido Grandi in his work entitled Quadratura 

Circuli et Hyperbolae (1703), [14]. The attribution to Grandi is also confirmed by the excerpt 
of the Exercitatio geometrica in qua agitur de dimensione omnium conicarum sectionum, 

curvae parabolicae by Lorenzo Lorenzini (1721) and by Gino Loria Curve speciali algebriche 

e trascendenti (1930), [17]. 
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Grandi in Propositions III and IV of the treaty on Quadratura Circuli et Hyperbolae gives its 
first definition of the versiera, followed by interesting properties including:  

1) the portion of the plane between the curve and its asymptote, indefinitely extended by 
the two bands, is equal to four times the generator circle of the curve itself,  

2) rotating this portion of the plane around the asymptote, the solid is equivalent to twice 
that generated in the same rotation by the generating circle. 

 
Grandi finds the equation of the curve in orthogonal Cartesian coordinates, generalizing to 
curves of which the versiera is a special case. Finally, he applies the versiera to optical 
considerations. Precisely in this order of ideas, he named the curve Scala Intensionum, since 
the ordinate in each points of the curve represent the intensity of illumination radiated from the 
source in the same points to which it is applied. 
 

 

 

Fig. 5 
 
Maria Gaetana Agnesi defines the versiera in Book I, Chapter V, Example, using the 
geometrical definition given by Grandi in Note al Trattato del Galileo del moto naturalmente 

accelerato.  

 

Given the semicircle ADC of the diameter AC, we consider the point M, out of it, such that, if 
we draw MB normal to the diameter AC, which will cut the circle in D, we have  
 

AB : BD = AC : BM. 
 
Because there are infinitely many points M, which satisfy the problem, the locus is asked for. 
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Fig. 6 

 
In Book I, Problem III, Maria Gaetana, using simple geometric proportions, deduces the 
equation of the curve and proves that the curve has a horizontal asymptote. Then she proves, 
using the definition of convexity, the existence of at least one inflection point. In Example III, 
Maria Gaetana explains how to draw the curve. 
 
In Book II, Example II, Maria Gaetana finds the inflections points, using the differential 
calculus’ method. 

 

 
Fig.7 

 
 

Let the versiera’s equation 
a ax xx a x

y a
x x

 
  , AB = x, BF = y, AD = a.  

We differentiate two times 
 

2

aadx
dy

x ax xx
 


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a aax dx
ddy

x ax xx





 . 



GTeaching calculus with Maria Gaetana Agnesi 

 

 

G – slovenský časopis pre geometriu a grafiku, ročník 15 (2018), číslo 30, s. 19 – 34 31 

 

For 0ddy   we obtain 3 4 0a x   and so 3 1
;

4 3
x a y a  , that is an inflection point. 

 
For 𝑑𝑑𝑦 = ∞  we have 𝑥 = ∞ or 𝑥 = 0, it means that the asymptote  AQ and the tangent to D  
are parallel to the ordinate axis.1 
 
 
Conclusions 

 
When her main book appeared, leading Italian and French mathematicians praised Agnesi’s 

style as clear and effective, but her historiographical fortune declined rapidly towards the end 
of the century and never quite recovered. 
 
The biographies of Agnesi rehashed a very limited amount of information, mostly anecdotal, 
derived from a first biography published by Antonio Frisi in 1799 [9]. 
 
Nineteenth and twentieth-century historians did refer to Agnesi as a heroine of the 
Enlightenment, but always bearing in mind the necessary limitations of her gender and therefore 
of her technical and conceptual accomplishments. Indeed, the belief that the practice of 
mathematics is essentially gendered is not as distant as some of us might like to think. One 
should just remember that, in 2005, Larry Summers, then president of Harvard University, 
speculated that behind the gender gap in top science and engineering jobs there might be issues 

of intrinsic aptitude. 
 
In 1989, Clifford Truesdell published the most in-depth study of Agnesi’s scientific work in 

which he concluded that Agnesi must be appreciated simply because she was a woman engaged 
in mathematics at a time when this activity was entirely dominated by men,  but there is nothing 
in her work that justifies special attention. 
 

Maria Gaetana Agnesi was famous in her time, mainly as an isolated, unique, female prodigy, 

a marvel first of precocious learning, later of Catholic piety. Misty fame still clings to her 

memory, long nourished by the occasional curiosity of mathematicians and now revived by 

feminists. Whether or not she was as a mathematician important in any sense - discoverer, 

propagator, teacher - can be determined, but her brief and intense devotion to elementary 

mathematics cannot be separated from her strange circumstances and strange life, and as her 

story unfolds, a certain unity, at first unexpected, can be perceived in it [24]. 
 
Truesdell’s judgment on the Instituzioni is in clear continuity with remarks of Gino Loria; in 
his opinion, indeed, this book is a mere work of popularization that lacks originality, and 
therefore historical interest. 
 

The work does not excel in originality; ... but it is distinguished by clarity and rigor of style and 

by numerous and interesting applications; consequently... it was judged so favourably as to 

arouse the enthusiasm of some . . .  [17]. 
 

                                                 
1 All the figures in this paper are reproductions of the original figures in the cited works. We have kept the style   

of Agnesi's proofs as much as possible. 
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The opinions on the mathematical work of Maria Gaetana Agnesi is still controversial, mainly 
because she did not discover any new analytical properties.   
 
Luigi Pepe describes Agnesi’s book as an exposition by examples rather than by theory [23]. 
 
However, the same could be said of John Bernoulli’s integral calculus, written in 1691 and 
1692, published in 1742. All of Euler’s books are full of examples. 
 
The style and content of the Instituzioni provide us with precious indications about Agnesi’s 

intentions and goals. The book presents indeed some distinctive features when compared to 
contemporary treatises. It looks like a hybrid of different mathematical traditions, namely the 
Leibnizian-Bernoullian and the Newtonian. It is written in Leibnizian algebraic notation, but 
the thinking behind it seems always genuinely geometrical, as was proper in the Newtonian 
tradition. It is not a coincidence that the Instituzioni would attract the interest of some British 
scholars of the nineteenth century, at a time of bitter disputes about the respective merits of the 
two competing approaches [20].  
 
Many elementary textbooks today, especially those used in courses for engineers, physicists, 
and economists, are of that kind as far as concerns mathematical thought, but they usually offer 
redeeming examples of how to apply calculus to problems suggested by natural or fancied 
phenomena. In our opinion, Maria Gaetana makes a more general vision of problems and 
contributes to favour the mathematical abstraction [19]. 
 
We can propose these arguments or problems by means of laboratory instruments, flipped 
classroom techniques, or by didactical methods and we think that the media are different but 
the meaning is the same. According to some scholars, the abstract approach, nowadays we use, 
can be didactically not very effective for the beginner student. They think that an intuition of 
infinitesimals can be oriented to lead to mathematical concepts. From this point of view, we 
present the way in which Maria Gaetana Agnesi presented the cycloid, a traditional curve that 
nearly every mathematician used as example for demonstrating the power of the differential 
calculus techniques. 
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Reinterpreting Pablo Picasso’s paintings  
using Bézier curves 

 
Cristina Păcurar 

 

 

Abstrakt 

Predložený článok pozostáva z dvoch častí  
venovaných reinterpretácii diel Pabla  
Picassa pomocou Bézierovych kriviek. 

V prvej časti je cieľom použiť Bézierove 

krivky na reprodukciu slávnej kresby Pabla 
Picassa, ktorá bola vytvorená ako čiara 
jedným ťahom. Uvedená je aj ďalšia 

reprezentácia tejto kresby, ktorá sa javí ako 

typickejšia pre umelecké hnutie kubizmus. 
V druhej časti analyzujeme portrét Dory Maar 

a pokúsime sa nájsť iný vzhľad tejto maľby 

procesom inverzným k procesu použitému 

v prvej časti článku. 
Kľúčové slová: Pablo Picasso, prosté umenie, 
kresby, Bézierove krivky, Tête de femme, 
Dora Maar, kubizmus, Bernštejnove 
polynómy. 

  Abstract 

The present paper is composed of two parts 
concerning Pablo Picasso’s artworks 

reinterpreted through Bézier curves. For the 

first part, we aim to reproduce a famous line 
drawing of Pablo Picasso with the use of 
Bézier curves. Moreover, we also give 
another representation for the drawing from 
a point of view more specific to the Cubism 
artistic movement. In the second part, we 
analyze one of the portraits of Dora Maar and 
try to find another appearance for the painting 
through an inverse process from the one 
applied in the first part. 
Key words:  Pablo Picasso, low-complexity 
art, drawings, Bézier curves, Tête de femme, 
Dora Maar, Cubism, Bernstein polynomials. 

1 Bézier curves 

Bézier curves are parametric curves which are widely spread in many areas and have a variety of 
applications in many different fields. The curves are named after Pierre Bézier, who published 

his work about the curves in 1962. 
 
Bézier curves are based on Bernstein polynomials. They are in fact defined by a set of points, 
called control points, from which the first and the last one represent the starting point and the 
ending point of the curve. The other intermediate points are usually not on the curve. 
 
A linear Bézier curve is a line segment defined by the starting point P0 and ending point P1 and 
linear Bernstein polynomials: 

𝐵(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃1 ,       𝑡 ∈ [1,0] . 
 
Moving on to quadratic Bézier curves, their representation is given by the second degree 
Bernstein polynomials and 3 consecutive points P0, P1 and P2: 

𝐵(𝑡) = (1 − 𝑡)2𝑃0 + 2𝑡(1 − 𝑡)𝑃1 + 𝑡2𝑃2 ,       𝑡 ∈ [1,0] . 
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The discussion can be generalised to the Bézier curves of degree n determined by n + 1 control 
points and Bernstein polynomials of degree n defined by formula: 

 
𝐵𝑒𝑖𝑛(𝑡) = ∑ (

𝑛
𝑖

)𝑛
𝑖=0 (1 − 𝑡)𝑛−𝑖𝑡𝑖  ,       𝑡 ∈ [1,0] . 

 
Bézier curves have been widely studied and are a powerful and highly important tool in geometric 
modelling of approximation curves, which increases their usefulness in computer graphics, 
animations and other numerous fields. 

2 Pablo Picasso 

Pablo Ruiz Picasso was born on 25th October 1881 in Malaga, Spain, but he spent most of his 
life in France. He was a multilateral Spanish plastic artist, with over eighty years of prodigious 
activity as a painter, a sculptor, a poet, a playwright and a stage designer. Picasso was one of 
the most influential figures of the 20th century. 

He is one of the founders of the artistic movement called Cubism. He changed the course of art 
with his controversial oil painting from 1907, Les Demoiselles d’Avignon, as it "was only a first 
step towards a complete revolution in the world of art; it heralded the beginning of cubism" [4]. 
Cubism brought to light a painting of a dissected subject, which is put under a magnifier glass 
not only as a tangible presence, but much more as a keeper of unknown secrets in its essence. 
Thus, the resulting canvas in Cubism is a mixture of the subject’s essence, which may reduce 

the real appearance of the object to even eliminating it completely, and the author’s feelings 

toward everything the subject represents. 

One of Picasso’s trademarks is the importance of lines throughout his artworks, which are called 
the backbone to his art by Christopher Lloyd [8]. The present paper analyses some of the artist’s 

line drawings, which have an undeniable significance and an incontestable beauty. Besides the 
drawings, the paper approaches one of the many paintings portraying one of Picasso’s muse, 

Dora Maar. Despite the fact that the painting in question is not a line drawing, the importance 
of the lines in this artwork is prominent. 

3 Picasso’s drawings 

Picasso has made some experiences during his life with some drawings that strike the viewer 
with their simplicity, which actually hides a great amount of complexity. In [7], an impressive 
collection of Picasso’s drawings can be found. The drawings from Fig. 1 and Fig. 2 are just 
some examples of the incredible one-line drawings that can be found in [7]. 

Picasso’s inspiration for line drawing came from various sources, as the painter chose numerous 
subjects, including animals, mythology and even portraits or still life. Despite this significant 
variety of subjects, the connecting element of all drawings remains the striking simplicity which 
paradoxically manages to transmit a lot. 

One of his simple single line drawings pictures is a dog, which can be seen in Fig. 2a). This dog 
was actually the artist’s dog, a dachshund named Lump. 
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The drawing of Picasso’s own dog fascinated the viewers and suggested the idea of reproducing 
this piece of art. In [6], a reproduction of the Dog based on Bézier curves is realized. 

 

 

    
 a) Squirrel   b) Sparrow           c) Camel  

Fig. 1.  One line drawings 
 

 a) Dog    b) Owl        c) Grasshopper  

Fig. 2.  One line drawings 

4 The Sparrow - Pablo Picasso 

One of Picasso’s drawings depicts a sparrow, Fig. 1b). The sparrow is just a single continuous 
line, leaving a hasty viewer with the false impression that the sketch has remained unfinished. 
Despite this, the drawing manages to perfectly capture not only the essence of the subject, but 
also its movement, as the sparrow seems to be taking a walk just across the spectator’s horizon. 

Looking at this simplistic, yet tremendously powerful drawing while taking into consideration 
the way Bézier curves are characterized (and are obtained), the idea of approaching Picasso’s 

Sparrow with those type of curves seems to be achievable. 

An important advantage in the pursue to obtain Picasso’s Sparrow is the fact that Python 
programming language offers a package specialized in Bézier curves, called bezier. This 
represents a valuable support in reproducing Picasso’s piece of art with the help of Bézier 

curves. The starting point for the Sparrow is to determine all the control points that will define 
the curve. 
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Firstly, we take as initial and, respectively, final point all the inflexion points that can be spotted 
on the drawing. The next step is to choose the minimum number of additional control points 
 

 Start Point 1st Control Point 2nd Control Point End Point 

Curve 1 (1.66, 1.41) (2.82, 0.4) (5.4, 4.56) (6.9, 4.87) 

Curve 2 (6.9, 4.87) (5.3, 10.84) (2.07, 8.77) (2.67, 6.9) 

Curve 3 (2.67, 6.9) (3.15, 7.76) (3.8, 6.96) (2.67, 6.9) 

Curve 4 (2.67, 6.9) - - (2.54, 6.58) 

Curve 5 (2.54, 6.58) (3.03, 6.93) (3.35, 6.15) (3.02, 4.56) 

Curve 6 (3.02, 4.56) (3.45, 3.33) (4, 1.92) (4.5, 0.84) 

Curve 7 (4.5, 0.84) (4.13, 0.86) (3.73, 0.84) (3.33, 0.8) 
 

Tab. 1.  Control points for the Sparrow 

which will model the line, in order to obtain the desired curve of the smallest degree. The control 
points which have been considered are listed in Tab. 1. As it is noticeable from Tab. 1, except 
for Curve 4, which is a linear Bézier curve, the other six ones are cubic Bézier curves determined 
by the Bernstein polynomials of order three and 4 control points, and represented by the 
following formula 

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3, t ∈ [0, 1]. 

In order to manipulate the control points, the numpy Python package is required. We introduce 
the control points from Tab. 1 as an array, using the built-in numpy function asfortranarray, 
which converts the input to a n-dimensional array (ndarray) with column major memory order. 
The values are hold into variables named nodes with the indicative number of the corresponding 
curve. The Bézier package’s feature Curve generates the corresponding Bézier curve based on 

the nodes array and the specification of the curve’s degree. For example, the first curve is 
generated as shown in Example 1. 

Example 1 

i m p o r t  numpy a s np 

i m p o r t  b e z i e r 

n o d e s 1 = np . a s f o r t r a n a r r a y ( [ 

# x   c o o r d i n a t e f o r t h e  c o n t r o l p o i n t s  

[ 6 . 9 , # s t a r t i n g p o i n t f o r c u r v e 1  

5 . 4 , # 2 nd  c o n t r o l p o i n t 

2 . 8 2 , # 3 r d c o n t r o l p o i n t  

1 . 6 6 ] , # end c o n t r o l p o i n t 

# y c o o r d i n a t e 

[ 4 . 8 7 , # s t a r t i n g p o i n t 

4 . 5 6 , # 2 nd  c o n t r o l p o i n t  

0 . 4 , # 3 r d c o n t r o l p o i n t 

1 . 4 1 ] , # end c o n t r o l p o i n t ] ) 

# g e n e r a t e b e z i e r c u r v e   f r o m   n o d e s 1 , w i t h d e g r e e 4  

c u r v e 1  =  b e z i e r . C u r v e ( n o d e s 1 , d e g r e e =4) 
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After creating all the Bézier curves in the same way, we generate the xy axes system in which 
the curves are to be plotted. The bezier package also benefits of its own means of creating the 
plot, through the built-in package plot. Thus, using only seven Bézier curves, we can obtain 

a true reproduction of Picasso’s Sparrow. The copy of the artist’s piece of art is illustrated in 
Fig. 3, where each of the distinct Bézier curves used is contoured in a different color for a better 
outlook of the result. 
 

 
 

Fig. 3.  Python reproduction of the Sparrow with Bézier Curves 

The process of redrawing the Sparrow involves 26 control points, from which 7 are repeated. 
However, in the final image, only those 7 points are actually observable. Thus, bearing in mind 
some of the traits specific to Cubist artworks, we aim to reinterpret the initial model of the 
Sparrow. To do so, we represent all the control points from Tab. 1 in Fig. 4a) and display them 
along the quadrilaterals obtained from joining them. 
 

 
a) Sparrow’s reproduction with control points b) Quadrilaterals obtained by joining 
                                                                                       control points for the Sparrow 

Fig. 4.  The Sparrow 
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Fig. 4b ignores the initial model, the Sparrow and consists of an independent new 
representation, from a point of view more specific to the Cubism artistic movement. The sharp 
edges image which is obtained shows a different face of the beautiful inspiring smooth single 
line that is Picasso’s Sparrow. 

5 Tête de femme (Dora Maar) 

The process of decreasing the complexity of its subjects, which Picasso experimented with, has 
as a result the beautiful masterpiece drawings presented in sections 3 and 4. However, looking 
at Picasso’s paintings, one may more often find unusually complicated pieces of art, than some 
simple and faithful to the reality drawings, like the Sparrow. 

Naturally, the question is arising, how to come to some more simplistic, drawing like image, 
from a piece of art that has been complicated to look less like its original model. In this section 
we try to reach an image which is simpler and closer to the reality of the initial subject, starting 
from a distorted model pictured in one of Picasso’s paintings. 

 
 

          
 

a) Tête de femme (Dora Maar)                           b) Tête de femme with control points 

Fig. 5.  Tête de femme 

During his life, Picasso has repeatedly painted the same subject in different styles or just 
changing a slightly bit the perspective. This is also the case with Dora Maar. Henriette Theodora 
Markovitch, who is known as Dora Maar, was a photographer and painter. She met Picasso in 
1936 and soon became his muse and lover for almost a decade. She is well known for having 
photographed Picasso’s Guernica while it was being painted. During their time together, Dora 
Maar has been portrayed in all manners and styles that Picasso has experienced by that time in 
his life. Among those numerous portraits of her, a painting from 1941, shown in Fig. 5 a  strikes 
the viewer’s eye with its perfectly sharp edges. The face is only composed of polygons, from 
which the majority are quadrilaterals. 

Bearing in mind how a Bézier curve is obtained, and keeping a visual representation of the 
quadrilateral obtained from the control points needed for a cubic Bézier curve, the idea of 

recomposing an image closer to the real model seems feasible. In those circumstances, the 
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portrait of Dora Maar may be subjected to an inverse procedure to the one approached at the 
end of section 4. 

The first step, just as in the previous sections, is to establish the control points. In order to do 
so, we mark each of the vertices of the polygons from the painting and consider them control 
points. 

Fig. 5b) has all the vertices of the initial painting marked with a corresponding point. The 
purpose is to maintain those exact points and try to create Bézier curves of an appropriate degree 

based on the sharp initial image. 

For example, the upper left corner, which seems to be part of the blue hat of the subject, is the 
quadrilateral CDEF. In Fig. 6a), we can observe that taking as starting point C, 1st control point 
D, 2nd control point E and end point F , we obtain a Bézier curve which will be the dark blue 
curve in the upper left corner of the hat in Fig. 6b). 

Repeating the process of marking points for a polygon with n vertices, converting it to a n-th 
degree Bézier curve and plotting it on the same canvas, we obtain the full image in Fig. 6b). The 
contour obtained resembles the contour of a face from the side, with the right ear showing a bit, 
with curled hair that frames the head, and an interesting hat on top of it. Of course, the obtained 
image can be modified to resemble more a face. However, the fact that following exactly the 
vertices of the initial painting lead us to a model that may be a contour of the initial model, 
makes the process of using Bézier curves in understanding paintings a valuable tool. 

 
 

a) Detail of Tête de femme (Dora Maar) b) Tête de femme with Bézier curves  

Fig. 6.  Bézier curves reinterpretation 

For that matter, Fig. 6b) depicts the result of combining 21 Bézier curves obtained from the 

control points marked on Fig. 5b). 

Although the image obtained lacks the most important part, the facial features, one can make 
an imagination exercise and add the expressive eyes from the original image to the obtained 
contour. The substance of the subject seems to be always laying inside the eyes. Thus, the eyes 
of Dora Maar could not be represented with Bézier curves without loosing their meaning. 

Despite the fact that the eyes obey somehow the sharp edges of the entire painting, they are the 
closest to reality. Modifying their proportions a slightly bit, the eyes follow the real model and 
remain a portal to the essence of the subject. 
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6 Conclusions 

The process of simplifying the art while reducing it to its substance without losing any of the 
illusions and emotions it initially creates is one of Picasso’s distinctive traits. This is strongly 

related to its inverse process, which makes the art more complex, adding its hidden mathematics 
to the front desk, ready to face the viewer. The painting Tête de Femme (Dora Maar) is just one 
example of Picasso’s paintings which reveals its secrets to the viewer while hiding its original 

reality. Besides being connected by their complementarity, the two processes strike in similarity 
while referring to the opposite means they use in order to reproduce the same essence. 

Bézier curves are not only a means of reproducing Picasso’s drawings, but they are a significant 
tool to reinterpret some famous artworks. The curves might be an instrument to shift from 
drawings and paintings that are faithful to the reality to some examples of art more specific to 
Cubism, as we showed in section 4 and also act in the aid of a counter process, of revealing 
a more reality-like model from the initial painting, like in section 5. 
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Abstrakt 

Určení míry podobnosti mezi dvěma 3D 

objekty patří k vysoce náročným 
problémům počítačové grafiky. V tomto 
článku jsou k výpočtu míry podobnosti 

trojúhelníkových sítí, které byly získány 

optickým skenováním, použita tvarová 

rozdělení tří různých tvarových funkcí. 
Vyhodnocení založené na analýze systému 

měření (MSA – measurement system 
analysis), což je statistická metoda běžně 

užívaná v systému řízení jakosti, je použito 

pro posouzení způsobilosti jednotlivých 

tvarových rozdělení. 
 

Klíčová slova:  trojúhelníková síť, tvarová 

funkce, tvarové rozdělení, MSA 

  Abstract 

The need to measure a similarity between 
two 3D objects belongs to highly 
challenging problems in computer graphics. 
In this paper, a shape distributions approach 
based on three different shape functions is 
used to compute a similarity measure of 
triangular meshes obtained by optical 
scanning. The evaluation based on  
a measurement system analysis (MSA),  
a statistical method commonly used in 
quality management systems, is applied to 
assess the capability of individual shape 
distributions. 
 

Key words:  triangular mesh, shape 
function, shape distribution, MSA 

 
 
A measurement system analysis (MSA) is defined as an experimental and statistical method 
to identify the sources of variation in a measurement process and determine the value of these 
variations [1]. Based on calculation of variance range of measurement repeated several times, 
it is possible to assess statistical competence or incompetence of the most important variation 
sources, i.e. operators and measurement equipment. In this paper, the MSA approach is 
modified, so that the capability of three different shape distributions to calculate similarity 
measure of triangular meshes is assessed. Shape functions that measure simple geometrical 
features on a 3D model (distance, area, volume, etc.) are used in shape distributions approach 
to simplify solution of shape matching or shape-based recognition problem [2], [3]. If the 
shape distributions are used, two probability distributions sampled from a suitable shape 
function are compared instead of traditional shape matching methods (e.g. parametrisation, 
feature correspondence and model fitting). Originally, the shape distribution is calculated for 
a sufficiently large number of random sample points of the surface [2]. In this paper, where 
the shape distributions approach is applied on triangular meshes, all the mesh vertices are 
considered to be the random sample points. The meshes were obtained by repeated optical 
scanning of the same ball-bar standard by means of three different types of scanners. The 
shape distributions of all the meshes were calculated and compared with the shape 
distributions of the nominal mesh that was generated on the theoretical CAD model of the 
standard. 
 
The paper is organised as follows. All the triangular meshes compared here were obtained by 
optical scanning of ball-bar standard commonly used for calibration of optical scanners. The 
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scanned ball-bar standard is shortly introduced in Section 1. Definition of shape functions 
based on measurement of distances of specific points and areas of specific triangles is 
described in Section 2. The application of shape functions in shape distribution approach 
when comparing a similarity of triangular meshes is given in this section, too. Basic ideas of 
MSA method, an experimental and statistical method to determine the amount of variation 
within a measurement process caused by individual factors, are explained in Section 3. The 
modification of MSA method to assess an ability of individual shape distributions in 
similarity measurement of triangular meshes is also described in this section. Conclusions on 
the ability of individual shape distributions described in this paper to measure triangular 
meshes similarity are summarized in Section 4. 

1 Ball-bar standard 

The ball-bar standard with two precise spheres connected by a cylinder is commonly used for 
calibration of optical scanners. The standard was scanned by three different portable handheld 
optical scanners S1, S2 and S3 separately five times so that fifteen triangular meshes in 
general position with respect to the coordinate system were obtained. An example of a part of 
one triangular mesh is shown in Fig. 1. Obviously, the scanned meshes are imperfect because 
they contain false reflections. These reflections have to be removed before shape distributions 
approach application. Therefore, all the meshes were pre-processed firstly, i.e. two spheres 
were calculated by least squares fitting, the meshes were aligned with respect to the 
coordinate system (the centre of straight line segment with endpoints at centres C1 and C2 of 
the spheres lies at origin O and C1C2  x). Secondly, all inappropriate parts of scanned 
handles and false reflections (see Fig. 1) that could distort the results were trimmed, see 
Fig. 2a). Finally, a triangular mesh of the nominal CAD model of the standard was generated 
(nominal mesh). The position of the nominal CAD model with respect to the coordinate 
system is identical to the position of the aligned meshes, see Fig. 2b). 
 

 
Fig. 1.  Part of a triangular mesh of the standard before pre-processing 

2 Shape distributions 

The shape distributions approach to calculate a similarity measure of triangular meshes 
consists in the following steps: shape function definition, shape distributions construction and 
shape distributions comparison. 

2.1  Shape functions  

In this study, the modifications of D1, D2 and D3 shape functions introduced in [2] are used. 
Originally, all the three shape functions are defined for points, randomly sampled on the 
boundary surface of a 3D model, and measure non-oriented distances. Here, the random 
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sampling is represented by n + 1 mesh vertices ( , , ), 0,1,...,
i i ii V V VV x y z i n  , and, due to the 

symmetry of the scanned object, oriented distances are taken into consideration. 
In particular, the D1 shape function measures the oriented distance of a mesh vertex from the 
origin. The orientation is given by algebraic sign of -coordinate of the mesh vertex. D1 
shape function is calculated by 

2 2 2sign( ) , 0,1,..., .
i i i ii V V V Vf x x y z i n     (1) 

 

D2 shape function measures the oriented distance between every two mesh vertices. The 
algebraic sign of -coordinate of midpoint ( , , ), 0,1,...,

i i ii S S SS x y z i n   of the line segment 
defined by the two mesh vertices determines the orientation. D2 shape function is given by 

 ˆ sign( ) , 0,1,..., ,
ii S if x i n a  (2) 

where 
ia  is the magnitude of a vector defined by two mesh vertices. 

D3 shape function measures the square root of oriented triangle area. The triangle vertices are 
represented by the origin and two mesh vertices. The orientation is determined by the 
algebraic sign of -coordinate of triangle centroid ( , , ), 0,1,..., .

i i ii T T tT x y z i n   D3 shape 
function is given by the formula  

 sign( ) , 0,1,..., ,
2i

i i

i Tf x i n


 
u v

 (3) 

where ui and vi are the position vectors of mesh vertices. 

2.2  Shape distributions  

To construct a shape distribution, it is necessary to construct a frequency histogram, i.e. it has 
to be determined how many values ˆ, andi i if f f  fall into each of k fixed sized classes. The 
frequency is normalized by number of mesh vertices n + 1 to eliminate the influence of 
different number of meshes vertices. An example of three histograms constructed for D1, D2 
and D3 shape functions of nominal mesh is shown in Fig. 2 c), d) and e) in the given order. 

2.3  Shape distributions comparison 

The shape distributions are represented by the relative frequency histograms. The similarity 
measure between two shape distributions is based on Minkowski L1 norm. In this study, the 
shape distribution of nominal mesh is considered the reference distribution. Consequently, the 
measurand in comparison is given by Minkowski L1 norm calculated by formula 

 
1

( , ) ,
k

i ii
D f g F G


   (4) 

where Fi represents D1 relative frequency of the scanned mesh and Gi represents D1 relative 
frequency of the nominal mesh. Similarly, L1 norm for 

1

ˆ ˆˆ ˆ( , ) ,
k

i ii
D F G F G


   and 
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1
( , ) ,

k

i ii
D F G F G


   can be obtained, where ˆ andi iF F  represents D2 and D3 relative 

frequency of the scanned mesh and ˆ andi iG G  represents D2 and D3 relative frequency of the  

 
Fig. 2.  Relation among triangular meshes, nominal CAD model and shape distributions: 

a) Aligned meshes,  
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b) Nominal CAD model,  
c) D1 relative frequency histogram of nominal mesh,  
d) D2 relative frequency histogram of nominal mesh,  
e) D3 relative frequency histogram of nominal mesh. 

nominal mesh in the given order. An example of shape distributions comparing the meshes 
scanned by scanner S1 is drawn in Fig. 3 (individual meshes are designated by  
M1, M2, …, M5, the nominal mesh by M0). Numerical values of L1 norms for all comparisons 
are highlighted by grey colour in Tab. 1. 
Considering that all meshes are compared to the same reference model, it can be expected that 
the smaller L1 norm, the more accurately the mesh is scanned. Simultaneously, it can be 
assumed that the shape of the scanned mesh will be reflected better by the shape function, 
whose mutual deviations of relative frequency histograms will be minimal. Although not all 
measurements are shown in the Fig. 3, there is an obvious shape resemblance of histograms, 
especially for D1 and D2 shape distributions. D3 shape distribution shows the greatest mutual 
deviations between the individual histograms. To assess all these aspects, the method of MSA 
is used. 
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Fig. 3.  Comparison of shape distributions for triangular meshes obtained by scanner S1 

3 MSA 

MSA is defined as an experimental and statistical method of determining the amount of 
variation within a measurement process. This method is usually performed using h appraisers 
(operators) measuring r parts m times. There are two main components of variation – 
repeatability (one appraiser measures the same part using the same measuring equipment 
more than one time) and reproducibility (variation in the average of the measurements made 
by the different appraisers when measuring the same part). Here, the MSA method is 
modified as follows: the D1, D2 and D3 shape distributions represent the appraisers (h = 3), 
the M1 to M5 scans represent the parts (m = 5) and the S1, S2 and S3 scanners represent the 
repeated measurement (r = 3). The aim is to determine whether the considered shape 
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distributions are statistically competent or incompetent, which means whether or not they can 
be recommended for similarity of triangular meshes measurement. 
 
The first step is to calculate the variation range for each measurement for each shape function 
(see Tab. 1) 

 max minij ijk ijk
kk

R x x   (5) 

where xijk is the measured value (L1 norms in grey cells), i = 1,2,3 indicates the shape 
distributions D1, D2, D3, j = 1,2,3 indicates the scanners S1, S2, S3 and  k = 1,2,3,4,5 
indicates the order of the scan. After that, the following values are calculated: the average 
variance range of repeated scans achieved by the individual shape distribution (see Tab. 1) 

 
1

1 r

i ijj
R R

r 
   (6) 

the average variance range of repeated scans achieved by all shape distributions 

 
1

1
0.1686

h

ii
R R

h 
   (7) 

the control zone given by upper control limit  

 4 0.4349UCL D R   (8) 

and lower control limit 

 3 0LCL D R  . (9) 

Note that the table constants D3 = 0 and D4 = 2.58 for r = 3. 
Finally, based on the range chart drawn in Fig. 4, the statistical competence or incompetence 
of the process is assessed. If all values of variance range Rij lie within the control limits 

  ,ijR LCL UCL  (10) 

for each shape distribution, the process is statistically competent. Otherwise, the shape 
distribution whose values exceed the control limits is statistically incompetent and cannot be 
recommended for similarity measurement. Obviously, D3 shape distribution is not suitable 
because its values do not lie within the control limits. This conclusion also coincides with 
a preliminary prediction made on the basis of a visual assessment of the graphs in Fig. 3. D1 
as well as D2 shape distributions can certainly be applied in similarity of triangular meshes 
measurement because their characteristics are almost constant and lie in the control zone. 
 

Shape 
distri- 
bution 

Scanner 
Measurement 

 
     

  0.0860 0.0863 0.0774 0.0746 0.0795  
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 0.1531 0.1541 0.1563 0.1520 0.1535  

 0.1065 0.1032 0.0997 0.1092 0.1052  

 0.0670 0.0679 0.0789 0.0774 0.0740 0.0731 

 

 0.0334 0.0338 0.0474 0.0379 0.0385  

 0.0701 0.0722 0.0701 0.0669 0.0703  

 0.0554 0.0546 0.0522 0.0577 0.0595  

 0.0367 0.0383 0.0227 0.0290 0.0318 0.0317 

 

 1.1977 0.3037 0.5002 0.4866 0.6195  

 0.4455 0.3295 0.3786 0.3554 0.3758  

 0.6411 0.6662 0.6783 0.6512 0.6701  

 0.7522 0.3625 0.2998 0.2958 0.2943 0.4009 

Tab. 1.  MSA calculations applied on Minkowski L1 norms for all scanned meshes 

 
Fig. 4.  MSA Range chart 

4 Conclusions 

In this paper, a measurement system analysis (MSA) was used to investigate the effect of 
three different shape distributions in the process of triangular meshes similarity measurement. 
D1, D2 and D3 shape functions were defined and applied on fifteen triangular meshes 
obtained by repeated optical scanning of the same object by three different scanners to obtain 
the corresponding shape distributions. To compare the shape distributions of the scanned 
meshes with a suitable reference data, the shape distribution of the nominal triangular mesh 
generated on the theoretical CAD model of the scanned object was created. The Minkowski 
L1 norm was calculated and all the obtained values were analysed by MSA. Based on MSA 
results, the D1 and D2 shape distribution were identified as very good tool for similarity of 
triangular meshes measurement. The D3 shape distribution cannot be recommended due to its 
large variance. 
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B. Jović, D. Velichová, M. Cvjetić:  Golden section: applications in domain  

of landscape architecture 

This paper deals with the analysis of the relationship between natural structures and golden 
cross sections, and application of the golden cross section in the domain of landscape 
architecture. The aspects and research results shown in this paper are concerning the 
geometric construction of the golden section and its applications by the elements of visual 
aesthetics in landscape architecture as the basic elements of the composition. The aim of the 
paper is the systematization of elements from the aspect of using the golden section, as well 
as the application on concrete examples in domain of landscape architecture. 

P. Magnaghi-Delfino, T. Norando:  Teaching calculus with Maria Gaetana Agnesi 

In 2018, we celebrated the three hundredth anniversary of the birth of Maria Gaetana 
Agnesi, mathematician and benefactress, born in Milan (Italy). We have examined the 
Analytical Institutions, the main work of Maria Gaetana, that she dedicated to students’ 
education. We think that pre-university students can acquire the fundamental mathematical 
ideas in Differential Calculus using methods and ideas proposed in the books that go back to 
the origins of the Analysis. From this point of view, we can use many suggestions and 
examples, contained in Agnesi’s Books [1]. 

C. Păcurar:  Reinterpreting Pablo Picasso’s paintings using Bézier curves 

The present paper is composed of two parts concerning Pablo Picasso’s artworks 
reinterpreted through Bézier curves. For the first part, we aim to reproduce a famous line 
drawing of Pablo Picasso with the use of Bézier curves. Moreover, we also give another 
representation for the drawing from a point of view more specific to the Cubism artistic 
movement. In the second part, we analyze one of the portraits of Dora Maar and try to find 
another appearance for the painting through an inverse process from the one applied in the 
first part. 

N. Pajerová, I. Linkeová:  Shape distribution approach to measure similarity  
of triangular meshes 

The need to measure a similarity between two 3D objects belongs to highly challenging 
problems in computer graphics. In this paper, a shape distributions approach based on three 
different shape functions is used to compute a similarity measure of triangular meshes 
obtained by optical scanning. The evaluation based on a measurement system analysis 
(MSA), a statistical method commonly used in quality management systems, is applied to 
assess the capability of individual shape distributions. 
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