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Note on determining approximate symmetries of planar
algebraic curves with inexact coefficients

Michal Bizzarri, Miroslav Lavicka, Jan Vrsek

Abstrakt

Tento ¢ldnok™ sa venuje istym modifikdcidm
neddvno publikovanej metédy aproximacnej
rekonStrukcie nepresnych rovinnych kriviek,
ktoré si povazované za perturbécie istych
nezndmych rovinnych sumernych kriviek.
Vstupna krivka je urend nepresnym
polynémom a kroky rekonstrukcie nadvizuju
na vysledky neddvno publikovanych ¢lankov
[6, 7]. Funk&nost navrhnutého pristupu je
dokumentovand na niekolkych konkrétnych
prikladoch.

KIacové slova: rovinné algebraické krivky,
vyhl'addvanie stimernosti, harmonické
polynémy, Laplaceov operator, aproximécia

Abstract

This paper* 1is devoted to a certain
modification of the recently published
method for an approximate reconstruction
of inexact planar curves which are assumed
to be perturbations of some unknown planar
symmetric curves. The input curve is given by
a perturbed polynomial and the reconstruction
steps follow the results from the recently
published papers [6, 7]. The functionality
of the designed approach is presented on
particular examples.

Keywords: planar algebraic curves,
symmetry detection, harmonic polynomials,
Laplace operator, approximation

1 Introduction and motivation

This paper is devoted to the symmetries of planar curves with inexact coefficients. Being
symmetric is a very useful feature which many real shapes possess and symmetries in the
natural world have significantly inspired people when producing tools, buildings, artwork etc.
An object has symmetry if there is a transformation (such as translation, rotation, reflection
etc.) that maps the object onto itself (i.e., the object has an invariance under the geometric
transformation). It is very important to be able to detect symmetry in geometrical models, both
from theoretical and practical point of view.

Problems dealing with symmetry detection and computation are often addressed in papers
coming from applied fields such as Computer Aided Geometric Design, Pattern Recognition
or Computer Vision, see [1, 5, 6] for the exhaustive list of references. In fields such as Patter
Recognition or Computer Vision especially the problem of detecting similarity is essential
because objects must be recognized regardless of their position and scale. In geometric
modelling, symmetry is important on its own right, since it is a distinguished feature of the

*Expanded version of the contribution to the Proceedings of the Slovak—Czech Conference on Geometry and
Graphics 2019 (Trencianske Teplice, September 2019).
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shape of an object. Nonetheless it is also important in terms of storing or managing images,
because knowing the symmetries of an image allows the machine to reconstruct the object at a
lower computational or memory cost.

The symmetry problem has been addressed simultaneously by computer science and
mathematics researchers. Whereas computer science typically processes set of points or
meshes, mathematics is mainly interested in objects described by equations. Recent research
has focused for instance on efficient algorithms for finding congruences and symmetries of
large point sets generated by 3D scans. The computation of symmetries and equivalences of
rational algebraic varieties also experienced a significant increase of interest as these objects
are very important in geometric modelling and related applications. One can find many papers
devoted to the detection and computation of symmetries and some equivalences of curves, see
e.g. [9, 8, 11, 10], or recent series of papers [1, 2, 3, 4, 5]. The problem of deterministically
computing the symmetries of a given planar algebraic curve was recently studied in [6].

As mentioned before, many real world shapes exhibit a symmetry. However, in most cases this
symmetry is not perfect but only approximate — which may happen, for instance, when some
input error (or some error caused by numerical computations) occurs. And, of course, in this
situations all subsequent exact algorithms and scenarios formulated for algebraic curves with
symmetries fail. Recently, see [7], we designed an algorithm for an approximate reconstruction
of an inexact planar curve which is assumed to be a perturbation of some unknown planar
curve. The initial step of the reconstruction algorithm is to find a suitable approximate centre
of symmetry and a particular regular m-gon to whose group of symmetries the group of
symmetries of the curve is isomorphic. In this paper, we modify the part devoted to finding the
approximate centre of symmetry and present an alternative approach that more closely matches
the original exact algorithm based on computing with Laplace operator, cf. [6].

The rest of the paper is organized as follows. Section 2 recalls some basic facts concerning
algebraic curves and their symmetries. We also recall the approach that uses the Laplace
operator for determining symmetries of algebraic curves. Section 3 is devoted to the
modification of the method formulated originally for exact algebraic curves. The designed
method is presented on several examples in Section 4. Finally, we conclude the paper in Section
5.

2  Preliminaries

First we recall selected elementary notions, basic properties and suitable methods whose
knowledge is further assumed.

2.1 Symmetric algebraic curves in plane

A planar algebraic curve C is a subset of E3 defined as the zeroset of a polynomial f(x,y). We
will assume that f has real coefficients, is irreducible over C and dimg C = 1. Any isometry
¢ € Iso, of E2 possesses the form x — Ax + b, where A € O(R,2) and b € R?. For
det(A) = 1, or = —1 we speak about direct, or indirect isometries, respectively.

We write Sym(C) for the group of symmetries of the curve C, i.e.,

Sym(C) := {¢ € Tsoy; 6(C) = C}. (1)

6 G - slovensky Casopis pre geometriu a grafiku, ro¢nik 17 (2020), Cislo 33,s. 5 - 16



Note on determining approximate symmetries of planar algebraic curves with inexact coefficients

It is well known that Sym(C) is finite unless C is a union of parallel lines or a union of
concentric circles. Moreover, if Sym(C) is finite then it is isomorphic to a subgroup of the
group of symmetries of some regular m-gon, m < deg(C). In what follows we are interested
solely in curves with a finite group of symmetries. The elements of a finite symmetry group are
rotations (all of them with the same center) and reflections (axes of all of them passing through
the same point).

Analogously we introduce Sym( f) by the relation

Sym(f) :={¢ € Isoy; fod = Af}, 2)

where \ # 0 is a constant.

We recall the following statement, which can be efficiently used to verify whether ¢ € Sym(C),
see [6] for more details:

Proposition 2.1. An isometry ¢ € Sym(C) if and only if f(Ax + b) = Af(x), where A = 1
or \ = —1.

2.2 Symmetries of planar curves via harmonic polynomials

We start with recalling the exact approach which has been formulated recently. For the sake
of brevity we will mention only basic steps and a generic scenario; the reader who is more
interested in this topic is kindly referred to [6], where all proofs and further explanations can be
found.

In general, it is not easy to find symmetries ¢ belonging to Sym(C) directly and one has to apply
a suitable computational approach — for instance to find some new polynomial i(x, y) such that
Sym(h) is finite, easy to determine (i.e., easier then Sym(f)) and Sym(C) = Sym(f) C
Sym(h). In [6], a successive application of the Laplace operator yielding the sequence

fr—Of— APfr— o Alf =, 3)
and followed by the associated chain of groups of symmetries
Sym(f) € Sym(Af) C Sym(A%f) C --- € Sym(A‘f) = Sym(h), ()

was efficiently used for finding such a polynomial h. Application of this technique is justified
by the fact that the Laplace operator as a linear mapping A : R[z, y] — R[x, y] defined by

F  Of
Af:@ o2 )

commutes with isometries, i.e., it holds
(Af)og=A(fod). (6)

A polynomial A satisfying Ah = 0 is called harmonic. By repeatedly computing the Laplacian,
cf. (3), in general we come down to either harmonic polynomials, or conic sections, or lines. All
situations are discussed in the original paper, here we recall only the most interesting part, i.e.,

G - slovensky Casopis pre geometriu a grafiku, rocnik 17 (2020), Cislo 33, s. 5 - 16 7
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when one arrives at a harmonic polynomial . We recall that if & is harmonic and deg(h) > 1
then Sym(h) is finite.

Next, we identify C with R? via z = x + iy <> (x,y). For a polynomial h(z,y) we consider a
complex function

where 0,h,0,h represent the partial derivatives of h with respect to z,y. The standard
substitution
1 _ i _
xzﬁ(z+z) and y:—ﬁ(z—z) (8)

allows to write g(x, y) as a complex function ¢(z, Z) in the complex variable z. Moreover, as h is
harmonic then g(z, y) satisfies the Cauchy-Riemann conditions and thus g(z, y) is holomorphic
and ¢(z, Zz) does not depend on Z, i.e.,

4
9(2,%) = g(z) = Y _ b2, ©)
j=0

The roots of ¢(z) yield the singular points of the vector field (0,h, —0,h). As any ¢ € Sym(h)
maps real singular points of the considered vector field onto real singular points of this field, we
finally obtain

Sym(h) C Sym(X), (10)

where ¥ = {(1,...,(} C C is the set of all roots of g(z) (counted with multiplicity).
Symmetries of h(x,y) are then derived from ¥, resp. ¢(z). For instance, a possible center
of any rotational symmetry of h(x,y) is encoded in the barycenter of ¥, i.e.,

1 )
nggg (11)

In addition, using Vieta’s formulas on g(z), one can see that the computation of the roots is not
necessary and we obtain

p=——1 (12)

Potential candidates for the rotation angle are of the type %, where m < 6 + 1 = deg(h).

Similarly, a method how to determine the potential axes of symmetry of h(x,y) from the
coefficients of g(z) is also presented in [6].

3 Formulation of the problem and modified algorithm

In paper [6] exact symmetries of algebraic curves in plane were studied. Recently, this problem
has been extended in [7] also to approximate symmetries. In latter case, the input to the

8 G - slovensky Casopis pre geometriu a grafiku, ro¢nik 17 (2020), Cislo 33,s. 5 - 16
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algorithm is a planar curve C which is a perturbation of some unknown symmetric planar curve
Co-. This perturbed curve is described by a polynomial f(x,y) of degree d, i.e.,

d
C: f(z,y) = Z ai7jmiyj =0, ay <R (13)
i,5>0
Hi<d
For various purposes, it is often useful to consider curves in the projective plane. Every affine
algebraic curve of equation f(x,y) = 0 may be completed into the projective curve of equation
F(X,Y,Z) =0, where
d
F(X,Y,2)=2f(X/2,Y]Z) =) a;;X'Y' 2" (14)
ijk> 0
ihjth=d
is the result of the homogenization of f and X : Y : Z are the homogeneous coordinates in
the projective plane. Let us write ¢ = (ag0 : ag—11 : - - : ago) and we say that c represents C.
The space of all planar projective curves of degree d can be identified with the projective space

Pg_l, where N = (d;ﬂ).

The perturbed curve C possesses no symmetries. Nonetheless, the original curve Cy was by
assumption symmetric and thus using the exact approach, recalled in the previous section, one
could arrive at a distinguished point p (a center of any possible rotation, or a point through
which the axes of reflection are passing). The following strategy for approximate reconstruction
of Cy was suggested in [7] (for more details see the original reference):

(a) Determine a point p (the approximate center) and an integer m (the number of vertices of
a regular polygon) from the known perturbed curve C;

(b) Construct a new curve C having the symmetry of an m-gon with the center at p and being
as close as possible to the given perturbed curve C.

(c) Determine all the symmetries of the computed exact symmetric curve C to obtain the
approximate symmetries of the perturbed curve C.

In this paper we focus on the crucial part of the algorithm and formulate an alternative approach
for determining a suitable approximate center of symmetry p of the resulting curve C, i.e., we
will deal with step (a) solely. Computing m is not part of this modified approach — one has
to consider all m from 2 to d and consequently choose the best approximation. The remaining
parts of the original algorithm remain the same.

Unlike in [7], we formulate the approach based on applying a sequence of Laplacians, see (3) —
which was the method used originally in paper on exact symmetries, cf. [6]. From this reason
we assume that the original symmetric curve C, was transformable by the chain of Laplacians
to a harmonic curve satisfying (3). As another new contribution, we solve the problem using
complex variables.

First we substitute (8) into f(z,y) which allows to write it as a complex function f(z,Z) in the
complex variable z in the form

d—i

d
f(z,2) = Z m; 27, (15)

G - slovensky Casopis pre geometriu a grafiku, rocnik 17 (2020), Cislo 33, s. 5 - 16 9
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or in the following matrix form

flz,2)=(1,2,2%, ..., 2YM

ST

0|
N

(16)

where m; ; = m;,; € C, and m;; = m;; € R, cf. [12] for further details.

Let us emphasize that, in this case, M is a Hermitian matrix with a zero submatrix 0(g—¢)x(d—e)»

i.e., it possesses the following structure

Mmoo
mio

myo

My41,0
m
M _ Z+2,0

mg.o
mME+1,0

md—1,0
mq,o

mi,0
mi

mea

Myy1,1
Myet21

M1
Mit1,1

mq—1,1

My
My

My

Myy1,e
M2

M.

My410 MEo Miy10 -+ Mg-10 Mdo

My, M1 Mig11 --. Mg—11 0

Myy1 My g 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

The reason why M contains the block of zeros follows from the assumption that the chain (3)
ends with a harmonic polynomial and from fact how the Laplacian operator works in complex

variables. i.e.,

Therefore we obtain

Af(z,2) = (1,2 2% ..., 27 M,

where M is of the form

(17)
1

z

|, (18)

10 G - slovensky Casopis pre geometriu a grafiku, ro¢nik 17 (2020), Cislo 33,s. 5 - 16



Note on determining approximate symmetries of planar algebraic curves with inexact coefficients

mi . Zm“ (é + 1)mg+1’1 A kmm (k + 1)mk+171 L. (d — 1)md,171
Z’H’ngl R 2 My é(é—‘rl) Meg e - Ekmk_’g 0 c 0
(/ + 1) Me1o - (E -+ 1)€ My e 0 L. 0 0 L 0
My =4 : - : : R : - :
kg .. Elmy 0 o 0 0 .. 0
(k+1)nlk+l70 0 0 0 0 0
(d—=1)mag_1o .. 0 0 0 0 0

Hence, the chain of Laplacians (3) can be replaced by the chain of matrices
M+— M — My — - — My, (19)

where the matrix M, of a harmonic polynomial of degree & — ¢ has the form

Omee () Teere oo Qe 0 o 0
(1) et 0 .. 0 0 ...0
M, =4C | (F g, o ... 0 o0..0 | @
0 0 0 0 ... 0
0 0 O 0 0

Let us recall that it was assumed that the sequence is ending with a harmonic polynomial.
Then it is evident that the harmonic polynomial 4 = A‘f in the chain (including the values of
k, ?) can be easily identified from the position of the block of zeros in the original matrix M.
Moreover, we will see that the center can be decoded from the matrix M, as well.

Following the previous approach we write polynomial (9) associated to the harmonic
polynomial A given by the matrix M. It holds

oh 1

2. " 3 (Oyh —i0,h), Q1)
and thus we obtain
oh " i+ 0+ 1 .
g(Z) = 2@ =2 4862 Z (fl + 1)( i )mi+g+1’gzl. (22)
i=0

Finally using expression (12) we arrive at the center of symmetry of the curve C

-1 (k—10— 1)(’71)77%_11 _ k-1
k—(—1 (k — ) (5ymy kme

p= (23)

Next we consider a perturbation of the original symmetric curve. This influences also the matrix
M which contains a block of “almost zeros”, now. Our goal is to identify this almost-zero-

G - slovensky Casopis pre geometriu a grafiku, rocnik 17 (2020), Cislo 33, s. 5 - 16 11
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submatrix and set it as zero matrix. This yields a new curve C described by the equation

Mmoo .- m&() ];

- . z

~ : .. : .. 9
C:(1,2,2%...,29 Meo ... Mee ... 221 =0. (24)

0)\.

Then we continue as in the exact case, determine the point (23) and set it as the approximate
center p.

Moreover, the previous result implies that the perturbation of the center is not worsen by
applying the sequence of Laplacians and it respects the order of perturbation of the coefficients
of the original curve. For this purpose, we recall some details dealing with the error propagation
during computing with inexact quantities. Consider A = a + o, B = b + [, where a < a,
f < band |a| <, |B] < e Then it holds

A o«

B b

(a+b)e
b2

(25)

and we can formulate the following assertion.

Lemma 3.1. For the error €; of the centre of the symmetric curve whose coefficients are given
with maximal error € it holds

< (mkl,é + mk,l)e

13

(26)

2,2
k mi

The final step of the reconstruction algorithm is to find a suitable symmetric curve C sufficiently
“close” to the given perturbed curve C when the center p of C is prescribed. From this part, we
may follow the approach designed in [7]. In particular, we construct a basis of all curves of
degree d with the rotational symmetry of m-gon and with the center of rotation p, and compute
the orthogonal projection of the perturbed curve to the space spanned by the spanned basis, see
[7] for all necessary details.

To measure suitably a quality of the approximation (i.e., the deviation ¢ between the perturbed
and the constructed curve) we will apply the standard metric used for computing the distance
between the points ¢, ¢ in the projective space of algebraic curves of degree d, in particular

(¢, c) = arccos ( € cl ) , (27)

lellllel]

where ‘-” and || || denote the standard inner product and the standard norm in the corresponding
vector space. The angle ¢ is real-valued, and runs from 0 to 7.

4 Computed examples

In this section we present the designed modification of the original approach from [7] on some
commented examples.

12 G - slovensky Casopis pre geometriu a grafiku, ro¢nik 17 (2020), Cislo 33,s. 5 - 16
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Fig. 1. Four non-symmetric curves (blue) given by perturbing the unknown
symmetric curves and the corresponding closest symmetric curves
(green) with the guessed centers (black) of the symmetries.

Example: Consider a quartic curve C given by a polynomial with floating coefficients (which
is a perturbation of a certain unknown symmetric curve), see Fig. 1 (top, left)

f=132%y* — 6423y — 16742y — 172* — 136.42° — 289.42° + 15.4xy°
+ T3xy* — 96.5xy — 227.12 + 13.2y* + 72.5y° + 157.7y* 4+ 91.6y — 39.4.
First, we transform f into the complex representation, cf. (8), and use the matrix form (16) —

for the sake of compactness we display the coefficients of the matrices with one decimal place
only.

-394 —113.6 +45.81 —111.8 -24.1i —-26.2—-30i —1.1-—5i
—113.6 — 45.8i —65.8 —42 + 6.31 —7.6 —6.1i 0
M~ | —111.8+24.1i —42 — 6.31 0.2 0 0
—26.2 4 301 —7.646.1i 0 0 0
—1.1+ 51 0 0 0 0

Next, we find the maximal almost-zero-submatrix in M and create a new one with this

G - slovensky Casopis pre geometriu a grafiku, rocnik 17 (2020), ¢islo 33, s. 516 13
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submatrix being exactly-zero.

-394 —113.6 +45.81 —111.8 —-24.11 —-26.2—-30i —1.1—-5i
—113.6 — 45.8i —65.8 —42 + 6.31 —7.6 —6.1i 0
—111.8 4+ 24.1i —42 —6.31 0 0 0

—26.2 + 301 —7.6+6.1i 0 0 0
—1.1+5i 0 0 0 0

Hence we have / = 1 and £ = 3 and using (23) we obtain an approximate center of symmetry
p = (—0.991,—1.074). (28)

Subsequently projecting C to all curves with the symmetry of m-gon with the center p, where
m € {2,3,4}, we obtain the best solution for m = 2, see Fig. 1. The deviation angle (27) is
approximately equal to 0.35.

Example: We have a non-symmetric cubic curve C, see Fig. 1 (top, right) given by the
polynomial

f=—6.8z% +17.12% — 102.12% — 53.92y° + 131.7zy
+ 1382 + 2.4y + 101.3y* — 233.3y — 3.7.

The matrix form (16) of the complex representation of f looks as follows (we again display the
coefficients of the matrices with one decimal place only)

-3.7 69 —116.61 —50.8+32.91 89 —1.1i
M ~ 69 + 116.61 —-0.4 -0.3 0
—50.8 — 32.9i -0.3 0 0
8.9 +1.1i 0 0 0

A matrix with maximal almost-zero-submatrix in M being exactly-zero is

-3.7 69 —116.61 —50.8+32.91 89 —1.1i
69 + 116.61 0 0 0
—50.8 — 32.91 0 0 0
8.9 + 1.1 0 0 0

Therefore we have ¢ = 0, k£ = 3 and we arrive at the approximate center of symmetry
p = (2.035,0.972). (29)

Finally projecting C to all curves with the symmetry of m-gon with the center p, where
m € {2,3}, we obtain the best solution for m = 3, see Fig. 1. The deviation angle (27) is
approximately equal to 0.39.

Example: We demonstrate the presented approach on further two curves of degrees four and
seven, respectively. See Fig. 1, bottom. In those cases we arrive at curves with symmetries of
square and pentagon, respectively. The deviation between the given non-symmetric curves and
the computed symmetric ones are 0.751 and 0.273, respectively.

5 Conclusion

In this paper, we studied and designed a certain modification of the recently presented method
for an approximate reconstruction of a planar algebraic curves with inexact coefficients, being
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a perturbation of some unknown (originally) symmetric planar algebraic curve. We focused
solely on the initial step of the algorithm from [7] which is devoted to computing a suitable
approximate centre of symmetry and a particular regular m-gon to whose group of symmetries
the group of symmetries of the curve is isomorphic. This modified method suitably uses, as
the algorithm for the exact case, cf. [6], the sequence of Laplacians, which is an operator
reducing the degree of the input polynomial and preserving symmetries. The functionality of
the designed approach was illustrated on several examples. The readers interested in this topic
are kindly referred to [6, 7] where they can find more details.
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Sierpinski’s curve: a (beautiful) paradigm of recursion

Paola Magrone

Abstrakt

Clanok nadvdzuje na povodné prace
Waclawa Sierpinskeho z roku 1915, kedy
predstavil rekurzivnu Struktaru, ktora nesie
jeho meno, Sierpinského trojuholnik. Jeho
povodnym zamerom bolo najst’ priklad
novej mnoziny, krivky vytvorenej na zaklade
znamej geometrie trojuholnikov. Tento
trojuholnik, ktory obsahuje gemetricku
rekurziu, bol presne definovany v roku 1915,
ale objavil sa uz aj pred Sierpinskym, a je
doteraz referenénym bodom pre vedcov.
Kracové slova: Sierpinského trojuholnik,
rekurzia, Cantorova krivka, Jordanova krivka

Abstract

This paper focuses on the original articles
written by Waclaw Sierpinski in 1915, when
he introduced the recursive structure that
bears his name, the Sierpinski’s triangle. His
first aim was to exhibit the example of a new
set, a curve traced starting from the geometry
of the well-known triangle. The triangle,
which embodies geometric recursion, was
rigorously defined in 1915, but appeared also
before Sierpinski, and is still a reference
point for scientists.

Keywords: Sierpinski’s triangle, recursion
Cantorian curve, Jordanian curve

1 New definitions for new mathematical objects

At the end of Nineteenth century, the community of mathematicians gave birth to many
contributions in the theory of sets and structure of numbers: new objects were defined, such the
concepts of accumulation point and limit of a sequence of numbers. The Real numbers, their
definition and structure as we know and use them today, is mainly due to the work developed
during those years by Richard Dedekind (1831-1916) and Georg Cantor (1845-1918). Waclaw
Sierpinski (1882-1969) begun his mathematical studies in the theory of numbers, and turned to
set theory after becoming acquainted with Cantor theories. Sierpinski in 1909 started teaching
the first course on set theory, which gained year after year a greater importance; he gave many
important contributions to the growth of this discipline and to its sistematization. He was one
of the founders of the Polish mathematical school which put roots in those new theories and
carried them on [3, 7, 20 tome 1].

This paper focuses on the original articles written by Sierpinski in 1915, when he introduced
the recursive structure that bears his name, the Sierpinski’s triangle. His aim was to exhibit the
example of a curve with such surprising and counterintuitive properties, to give rise to the need
to rethink the definition of curve.

This article is organized as follows: this first section is devoted to describe which were the
available definition of curve at the beginning of Twentieth century. Section 2 focuses on the
Sierpinski’s curve itself, and its mathematical properties. Section 3 describes some examples
of the use of the Sierpinski’s triangle in art and science.
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At the beginning of Twentieth century, there were two available definitions of a plane curve:
the Cantorian and the Jordanian one. A Cantorian curve is a planar continuum (a set contained
in the plane, closed, connected, containing more than one point) which has empty interior (each
point belonging to the set is a frontier point). A Jordanian curve is the image of a segment of
straight line via a continuous function, not necessarily biunivocal [12, pg. 90]. Cantorian and
Jordanian curves are topologically invariant [18], i.e., they are transformed in Cantorian curves
and Jordanian curves respectively by a continuous function, with continuous inverse.

As we know, there is no definition of a curve which conforms to intuition without being
too vast or too narrow. The difficulty already arises for plane curves and even more so
in the three-dimensional space where we are not at, even until now, drawing a limit
between the notion of line and that of surface [19].

In the articles dating 1915-16 [18,19] the author points out the urgency of giving a definition
of curve which could match with intuition and would also remain sound. For this purpose he
deliberately attacked these two definitions, to foster the scientific community to rethink and
improve them.

The existence of curves filling the square shows that the definition by Jordan is too wide,
because it embraces geometric figures which our intuition refuses to call line. But
Cantor’s definition is itself too wide. [...] There exist indeed Cantorian curves in which
no couple of points can be connected by a simple arc [19].

Sierpinski refers firstly to the Peano’s curve which is Jordanian, and not Cantorian for the
reason it fills the unit square. The second example he refers to, is the set (“the topological sine”)
A = A1 U Az where

Ar={0,y):y € [-1, 1]}, Ax={(x,y):y=sin1/x:xe (0, 1/x]}.

This set is closed, and connected, but non path connected: the points of A1 cannot be connected
with points of Az by a simple arc, which is the continuous image of a segment of line [13]. It is
Cantorian, but not Jordanian. The optimal definition of curve could be to include both
characterizations, “But even then, we come up against some very striking surprises” [19].

2 Sierpinski’s curve

The aim of the paper “Sur une courbe dont tout point est un point de ramification” was to show
a (paradoxical) example of a curve, Cantorian and Jordanian at the same time, having all points
as ramification points. Sierpinski defines a ramification point of a continuum C to be a point
p e C such that there exist three subsets (all continua) of C having in common, two by two,
only p. We point out that this definition led to that of order of ramification of a point (given by
P. Urysohn and K. Menger a few years after Sierpinski’s papers [14]). Roughly speaking, the
order of a point p in X is the number of lines meeting at p. To count this number one can take
an arbitrary small circular neighborhood of p and count the intersections of the set X with the
neighborhood.
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One intersection Two intersections Three intersections

Fig. 1. Order of ramification of a point. Left: the end point B has order one. Center: point p has
order two. Right, the point p has order three. Pictures by the author.

Sierpinski, then, constructed this paradoxical curve, starting from the triangle which bears his
name. Take an equilateral triangle (which side has, for example, length 1), join the middle
points of the three edges, obtaining 4 equilateral triangles (for other and more details: [4, 6, and
19]). The interior of the central triangle, the one not containing either of the three vertices A, B
or C, is erased. In Fig. 2 (original drawings of Sierpinski) left, the black central triangle is the
void; in the same figure, right, the second iteration; at each step the black triangles are the one
representing void parts. Observe that in the vast majority of visualizations produced after 1915,

by hand or by computer, colours are used in a complementary way: black for full areas, white
for voids.

Jo

Fig. 2. From the original article of Sierpinski, 1915. Left, level 1 iteration, right, level 2 iteration.

There are now three triangles, around a central “void”. Iterate the procedure on the remaining
three triangles: mark the middle points of the edges, join them, obtain 4 triangles; discard the
central one, keep the other three. At level one, since we obtain 4 triangles and discard one, we
are left with 3! triangles; level two shows 32 triangles. At level n there will be a set of 3"
triangles, equilateral and identical. Carrying on this procedure to the limit, as n goes to infinity,
the intersection of all the sets obtained at each iteration, thatis S =, Sn yields to the definition
of Sierpinski’s triangle (all the points not belonging to the discarded voids, at each step). The
set S is closed, connected, contains at least one point, so it is a continuum, and has empty
interior, so it matches with the definition of Cantorian curve [19]. A property clearly showed
by this geometric construction is the self-similarity of S: it contains copies of itself, at many
(infinite, when going to the limit) different sizes.
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Sierpinski’s triangle has many interesting dimension and measure properties. It has a non-
integer dimension, which can be calculated as follows. The “box-counting” dimension [15,16]
of aset T is the following limit (if it exists):

Dim(T) = —lim (In (N¢)/In (g)), as &— 0.

Where N¢is the minimum number of circles of radius € which are necessary to cover the set T.
In order to compute the dimension of the Sierpinski’s triangle, proceeding as in [6], one can
choose for any level n, &= (V3)/3-2™. At level n, the number of triangles generated by the
recursive process are 3", so N.= 3". The calculation of the limit yields

dim(S) = — lim, (In (3")/In ((v3)/3-2™) = In3/In2.
Furthermore, by a straightforward calculation, it follows that the area of S is zero.

Sierpinski built, then, an actual curve C, piecewise linear, starting by the structure given by the
triangle S (Fig. 3). In Fig. 3, center, the line L = S0S'1S%S’3 contains one edge for each of the
three triangles T1, T2, T3 appearing in Fig. 3, left. Iterating this procedure, as shown in Fig. 4,
implies that at step n the line L" will contain one edge of each of the 3" triangles of the level n
iteration.

V.

CX/A £ . 3 o r ~
2 So S S Sy Sg So

Fig. 3. The construction of the curve, first two steps. Sierpinski (1916).

Fig. 4. The construction of the curve, further steps. Lines L2, L3, L*, L5. Sierpinski (1916).

The equation of the curve (a polygonal chain) can be written down explicitly by means of
parametric equations

X= ¢n(t), Y = \Vn(t), with t € [0,1]
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such that for t = 0, 1/3", 2/3",...,1 the curve passes by the vertexes of the n-level triangle (as in
Fig. 3, Fig. 4) and that the functions ¢n(t) and yn(t) are linear for t e (i-1/3",i/3"),i=1,2,..., 3".
So a polygonal line remains defined for each level n. A straightforward calculation shows that
the sequence (¢n(t), wn(t)) converges uniformly to (¢(t), w(t)) in the interval [0,1]. Since (n(t),
wn(t)) were continuous functions, the limit curve is continuous, which yields the Jordan
property.

2.1 The Sierpinski’s triangle and the curve are the same set of points

The segments composing the polygonal line L" at level n, for any n, belong to the side of one
of the 3" triangles, so every point g € L" belongs to S and, since S is closed, passing to the
limit, each point g € R belongs to S, which yields R < S.

To prove the opposite inclusion, we recall again that the line L" passes for each of the 3"
triangles, and that the set S is contained in these 3" triangles. So, for every point r € S there
exists a sequence of points rne R such that dist (r, r,) < 1/2". By the compactness of [0, 1] there
exists a subsequence tk =2 t* €[0, 1], such that (exploiting the uniform convergence of

(9n(t), wn(1)) to (¢(t), w(1))
ok = (Grk(tnk), wik(tk)) =2 (9(t*), w(t*)) € R, as k goes to infinity
Sor e Simpliesr € R.

This implies that the sets R and S coincide. This fact yields that the set S is a Jordanian curve
and that the dimension of R and S are the same, so d(R) = In3/In2.

2.2 The order of ramification

This weird set fits perfectly with both definitions of curve. Sierpinski proved that each point,
except for the three vertices A, B, C are ramification points. All other points have order 3. The
idea of the proof is the following: let p be an arbitrary point, not a vertex of any of triangle in
the construction of S, we need to construct three continua arriving at p and having only p as
common point.

The point p is contained in an infinite sequence of triangles Ta1.....Tan, €aCh one contained in
the previous ones; let Aas.... Aan be the infinite sequence of the left vertices of those triangles
(in the following lines, the letters A, B, C will denote, consistently with Fig. 2, respectively
a left, up and right vertex). Joining all those Aa1.... Aan We obtain a polygonal curve, which we
call La. Let us define the set D to be composed by the point p and all the points of the segments
belonging to the curve La. It can be proved that the set D is closed, connected and infinite, so it
is a continuum, and it is a subset of S. With the same procedure, let us define the set Q,
consisting of the point p and a polygonal line Lg, connecting all the upper vertices Bai.... Ban
of the sequence of triangles containing p, and the set G consisting of p and the polygonal line
Lc, connecting all the right vertices Caz1.... Can . The three sets, D, Q, G are continua, and one
can prove that they intersect, two by two, only at p. So any point p which is neither one of the
vertices of the initial triangle, nor a vertex of any n-level triangle, has ramification order 3 [18].
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Since Sierpinski wanted to give an example of a curve having all ramification points, in order
to remove the exception of the three vertices of the initial triangle, he then suggests to put
together six triangles, to obtain an hexagon: in this way each one of the three initial vertexes
meet another vertex with the same order, and become a point having ramification order 3.

3 The recursive structure and its manifold apparitions in science and art

In [21] the author underlines that the reason we continue to encounter the Sierpinksi’s triangle
is that it embodies recursion, and is one of the simplest recursive structures we know: as shown
in previous sections, it can be easily drawn with ruler and pencil, up to a reasonable level. One
of the most ancient apparitions of the recursive structure of Sierpinski is what is called “Pascal’s
(1623-1662) triangle”, the triangular arrangement of the binomial coefficients; Sierpinski’s
structure reveals if even and odd coefficients are shaded in two different colours. Drawings of
this pattern can be found already in 13th century Chinese mathematics books ([11, 21]), well
before Pascal.

Another of the encounters, happened in 1883, and described in [21], regards Edouard Lucas
(1842-1891) who created the puzzle game “The Tower of Hanoi”. The graph of the possible
moves of the game takes the shape of a Sierpinski’s triangle.

Fig. 5. Left: the graph of 3-disc Hanoi, [21]. Right: Pascal’s triangle,
from http://mathworld.wolfram.com/SierpinskiSieve.html.

A surprising meeting with Sierpinski’s triangle could be found on a medieval floor, in central
Italy, made with stone mosaic by Marmorari Romani (as they are called in scholarly literature).
Clearly, since in this case the triangle is a physical object, the recursion cannot be repeated
infinitely many times; on the other hand, the geometric structure is clear if the scale iteration is
at least of level 3, as shown in the isolated triangle of Fig. 6, right [6].

A beautiful example of isolated triangles in golden leaf, showing level 3 and 4 of iteration,
belonging to the frieze of the cloister of Saint John in Lateran in Rome been studied in [4]; the
same isolated triangle has been the object of a collaboration with an inmate of a North American
Jail, who planned and realized with a team of other inmates a piece of art reproducing the
triangle; mathematics and the beauty of the ancient object were both an important stimulus for
the realization of the project [10] .
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Fig. 6. Left: Sierpinski’s carpets, Santa Maria in Cosmedin, Rome.
Right: San Clemente, Rome (late 11th century) photo Alessandra Carlini.

Fig. 7. A Sierpinski triangle drawn in the snow, by Simon Beck.

In Fig. 7, a Sierpinski’s triangle traced in the snow, by the snow artist Simon Beck. Beck works
using a compass and draws with the footprints he leaves with the snowshoes. Actually he walks
along a unique, continuous line, since as can be seen in the pictures, there are areas where he
must not leave footprints, and he does not “jump” from one area to the other; in other words,

he “draws a line without removing the pen from the sheet”.

Fig. 8. Variations on Sierpinski’s triangles by Simon Beck.
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During a Ted Talk he explained that he started with patterns having central simmetry, since
they are the simplest to do with this technique. The Sierpinski’s triangle is one of his favorites,
he has reproduced it on snow and sand, with some variations, as in Fig. 8.

In Fig. 9, left, a Sierpinski’s triangle drawn with a plotter led by a cellular automata (brought
to Aplimat conference in 2018) designed in order to make possible the interaction with public
in a science and technology museum. In picture 9, right, a composition made with five
Sierpinski’s triangles, slightly overlapping and arranged to form a penthagon. This image was
the final project for the Math and Art course (Honors College, Ball State University). The
authors produced a short animation showing the penthagon growing as the triangles become
larger, with a starbust effect [1].

Fig. 9. Left: Plotter linked to a cellular automata drawing a Sierpinski triangle [9].
Right: composition made with five Sierpinski’s triangles [1].

Picture in Fig. 10 shows an arrangement of rings [8], which leads to the shape of Sierpinski’s
Triangle; the iterations in Fig. 10 are from 1 to 4 and 9-10. The number of rings at step n can
be computed by the formula (3"1-3)/2. In the interations 9 and 10 the thikness of the circles has
been reduced to one fifth in order to make the picture clearer.

Fig. 10. An arrangement of rings bringing to the Sierpinski’s triangle [8].
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In Fig. 11 we observe the first three steps of an iterated function system [5]: at step 1 the unit
circle is mapped into the four smaller circles (Fig.11, left); step 2 repeats the procedure for each
of the four circles, and so on. The limit set is a Sierpinski’s triangle (except for the small central
smaller circle).

Fig. 11. The first three steps of the iterated function system in [5].

Then the author composes these transformations with a transformation of the kind
U(z) = (uz + v)/(—vz — u) where |u| — |v| = 1 (i.e., a subgroup of the group of Mobius
transformations, mapping the unit circle onto itself, and its interior, onto itself). By changing
the parameters u and v, the points of the circle can be rotated and the circle deformed, before
applying the previous iterated function system. This allows to obtain different limit images
(Fig. 12). The image shown in Fig. 13 is entitled “Sierpinski Triangle Eroding” and was
exhibited during the Art Exhibit at the Joint Mathematics Meetings (of the AMS) in January
2008 in San Diego, USA; it was made overlapping a sequence of images.

Fig. 12. Limit figures corresponding to different values of parameters.
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Fig. 13. “Sierpinski Triangle Eroding”, part of the Art Exhibit at the Joint Mathematics Meetings
(2008) obtained overlapping many images [5].

In [17] the author shows the presence of a first iteration Sierpinski’s triangle in Klimt’s painting
“Beethoven Frieze” and a second iteration triangle on a Neolithic vessel.

In Section 2 we described the top-down construction of Sierpinski’s triangle, which consists in
inserting voids in a “full” object. The same set can be obtained with a down-top procedure,
following the “chaos game” [2, 21]: let A, B, C be three points in the plane; the starting point is
any point P inside the triangle ABC. Choose randomly one of the three vertices, move P towards
the chosen vertex, for half of the distance and mark the point. Repeat this procedure, each time
choosing randomly the vertex, which gives the direction towards which the point will move,
and mark the arriving point, at each step. All these points accumulate on a Sierpinski triangle,
as shown in Fig. 14. This shows that the Sierpinski’s triangle is an “attractor” for the dynamics
of chaos game. In other words, the points found step by step with the chaos game, self-assemble
on the pattern of the Sierpinski’s triangle.

.\f:-.) - e
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Fig. 14. Accumulating points of the down-top procedure, obtained by the Chaos Game [21].
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5 Conclusions

We reported about the original articles dating 1915-16 where Waclaw Sierpinski introduced the
triangle that today bears his name. The motivations that led him to think of this new
mathematical object lay in the need to rethink the definition of curve. After many years the
Sierpinski’s triangle inspires artistic creations and still gathers the interest of the scientific
community.
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Moving ellipses on quadrics

Hellmuth Stachel

Abstrakt

Ku kazdej regularnej kvadrike 3-rozmerného
euklidovského priestoru existuje  troj-
parametrickd mnoZzina rezovych rovin, avSak
rozmery kazdej rezovej elipsy a hyperboly
zavisia iba od jej dvoch polosi. Preto na
kazdej kvadrike existuje jednoparametricka
mnozina kongruentnych elips aj hyperbol,
ktoré sa mdézu medzi sebou navzajom
premiestiiovat’. Pre pripad elips uvadzame
parametrizaciu ich pohybu na elipsoidoch,
hyperboloidoch a paraboloidoch. Pohyby
uzko suvisia s teériou konfokalnych kvadrik.

Kracové slova: konfokalne kvadriky,

Abstract

For each regular quadric in the Euclidean
3-space, there is a three-parameter set of
cutting planes, but the size of an ellipse or
hyperbola depends only on its two semiaxes.
Therefore, on each quadric Q there exist
ellipses or hyperbolas with a one-parameter
set of congruent copies, which can even be
moved into each other. For the case of
ellipses, we present parametrizations of
motions on ellipsoids, hyperboloids, and
paraboloids. These motions are closely
related to the theory of confocal quadrics.

Keywords: confocal quadrics, conics on

kuzeloseCky na kvadrikach

quadrics

1 Introdution

There are well-known examples of conics which can be moved on quadrics. Apart from the
trivial case of circles on a sphere, paraboloids are surfaces of translation, even with a continuum
of translational nets of parabolas. On quadrics of revolution, each planar section can be rotated
while it remains on the quadric.

What’s about general quadrics @ ? There is a three-parameter family of planes which cut 9
along a conic. However, the size of an ellipse or hyperbola depends only on its two semiaxes.
This parameter count reveals that on each quadric Q there exist conics with a one-parameter
family of congruent copies on Q. Below, we focus on ellipses and provide parametrizations for
the motion of appropriate ellipses on ellipsoids, hyperboloids, and paraboloids. The motions
prove to be in close relation to the family of quadrics being confocal with 9.

2 Moving ellipses on a triaxial ellipsoid

On each regular quadric 9, two conics e1 and ez in parallel planes are homothetic (Fig. 1). This
means in the case ellipses, that they have parallel axes and the same ratio of semiaxes ae : be.
Moreover, their centers lie on the same diameter. This follows from the polarity with respect to

(henceforth abbreviated as w.r.t.) 9.

On an ellipsoid &, we obtain the biggest ellipse within a homothetic family as the intersection
with a plane through the ellipsoid’s center O. On the other hand, there is a point P € & with
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a tangent plane 7p parallel to the cutting planes, and the axes of the homothetic conics are
parallel to the principal curvature directions at P (Fig. 1). The conics are even homothetic to the
Dupin indicatrix at P. This can be confirmed, e.g., by straight forward computation using
a Taylor expansion at P.

Fig. 1. Homothetic sections e1, e2 of the ellipsoid & in parallel planes.

According to the definition of the Dupin indicatrix, the ratio of the principal curvatures 1, x2
at P is reciprocal to the ratio of the squared semiaxes of the ellipses on & in planes parallel to
P, 1.6,

ae:be:\/;l:\//cj, if x>x,. (1)

The lines of curvature on quadrics are related to confocal quadrics. Therefore, we recall some
relevant properties of confocal quadrics.

2.1 Confocal central quadrics

Let £ be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter family of quadrics
being confocal with £'is given as

X2 y2 ZZ
F(x,y,z:k) = -1=0, 2
S a2+k+b2+k+c2+k @)

Where k € R\ {—a? —b? —c?} serves as a parameter. In the case a > b > ¢ > 0, this family
includes

—c® <k <oo triaxial ellipsoids,
for 4 —b? <k <—c* one-sheeted hyperboloids, 3)
—a® <k <—b* two-sheeted hyperboloids.

Confocal quadrics intersect their common planes of symmetry along confocal conics. As limits
for k — —c? and k — —b? we obtain ‘flat’ quadrics, i.e., the focal ellipse and the focal hyperbola.

The confocal family sends through each point P = (&, #, {) outside the coordinate planes, i.e.,
with & # 0, exactly one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted
hyperboloid. The corresponding parameters k define the three elliptic coordinates of P. We
focus on points P of the ellipsoid & with k = 0,
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2 2 2
& % +-+ i—z =1. 4)
The two hyperboloids i and > through P with respective parameters ki and k2, where

—a’® <k, <-b* <k <—c*<0, (5)

satisfy

Hi s, on < 1, i=12. (6)

‘a’+k, bP+k Pk

For given Cartesian coordinates (&, #, ¢) of a point P, we obtain the elliptic coordinates, i.e., the
parameters of the quadrics through P, by solving F (&, , k) = 0 in (3) for k. This results in
a cubic equation with three real roots. Conversely, if the tripel (0, ki, k2) of elliptic coordinates
is given, then the Cartesian coordinates (&, 7, ¢) of the corresponding points P € & satisfy

_a’(@ +k)(@” +k,)

C T @ o)

» b*(% +k)(b?+k,) 7)
- (b2 _CZ)(bZ _aZ) !

_c’(c® +k)(c® +k,)
- (CZ_aZ)(CZ_bZ) :

4/2

There exist 8 such points, symmetric w.r.t. the coordinate planes.

Fig. 2. Ellipsoid £ with lines of curvature (blue), curves of constant ratio of principal
curvatures x1 : k2 (red), principal curvature directions vi, vz at the point P,
and one umbilic point U with x1 = k2.
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At each point P of the ellipsoid &, the surface normal ne to & has the direction vector

(iiij ®)
a: b° c

The surface normals of the two hyperboloids J1 und #> through P are in direction of the
vectors

a’+k 'b?+k c?+k

vi::( ° 7 d ] i=12. 9)

The differences of any two of the equations in (4) and (6) yield
2 2 2
J + d + & =0, i=12,
a’(@’+k) b*(d*+k) c*(c*+k)
& i S o
(@ +k)@*+k,) (0*+k)([O>*+k,) (c®+k)(C*+k,)

and

(10)

This is equivalent to vanishing dot products
np-vi=np-vz2=vi-Vv2=0.

Therefore, confocal quadrics form a triply orthogonal system of surfaces. Due to a theorem of
Dupin, they intersect each other along lines of curvature. The vectors vi and v2 from (9) define
the principal curvature directions at P.

2.2 Ellipses on ellipsoids
Now, we look for the biggest ellipse on & within a homothetic family.

Lemma 1. The semiaxes of the ellipse in the diameter plane parallel to the tangent plane zp at
the point P e £ with elliptic coordinates (0, ki, k2) are

a, =K, b, ==k, . (11)

Proof. The diameter plane is spanned by the direction vectors vi and vz from (9). We look for
A € Rwith Avi € &, hence by (4)

2 2 2
{(az Tk)a (P +k)D | (C+k)C

This condition does not change if we subtract from the term in square brackets the left-hand
side of the first equation in (10), divided by ki. Thus, we obtain

}tz[ - & —— 252 2+...:|=1,
(@ +k)a” k(@ +k)a
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and, finally,

el P el 1 !
k. | @ +k)* (b®+k)* (c®+k,)? ko ’

hence, a, =|A|||v,|=+/~k, and b, =|A||v,|=+/~k, . These equations can already be found in

[1, p. 517].
0

Fig. 3. Moving the ellipse e on the ellipsoid £. The trajectories of the principal vertices
of e are displayed in green.

For the motion of a given ellipse e with semiaxes (ae, be), Lemma 1 implies the necessary
condition
a, <a, =+/-k,, where b<,-k, <a (12)

e

by virtue of (5). We infer, under inclusion of (1):

Theorem 1. If an ellipse e with semiaxes (ae, be) is moving on a triaxial ellipsoid &, then both
points P € & with tangent planes zr parallel to the plane of e move on curves with proportional
elliptic coordinates k, :k, =—a’:-b’. Along these curves also the ratio of the principal

curvatures remains constant (see Fig. 2).

The ellipses of £in planes parallel to zr have their principal vertices in the plane spanned by the
center O, point P, and by the principal curvature direction vz from (9). Therefore, the principal
vertices are located on an ellipse, for which OP and the major axis with length ap in the plane
through O determine conjugate diameters. Let p denote the position vector of Pand m=u p
with 0 < u = sin x < 1 that of the center M of any ellipse in e homothetic family.

G - slovensky Casopis pre geometriu a grafiku, rocnik 17 (2020), Cislo 33, s. 29 — 42 33



Hellmuth Stachel

Then, its major semiaxis ae equals ap oS X = ap /1— z* which results in
2 2
pr=1-2 1, % (13)
a'P

When during the motion of the ellipse e, the scalar 4 vanishes, then its center M coincides with
the center O of & The corresponding point P has the elliptic coordinate k, =—aZ?. In order to

continue the motion, point P has to jump to its antipode (note the example in Fig. 4).

Fig. 4. Motion of the ellipse e on the ellipsoid & — displayed together
with the trajectory of a principal vertex of e (green)
and that of the corresponding point P € £ (red)
with the tangent plane zr parallel to e.

In order to parametrize the motion of the ellipse e on the ellipsoid £ (see Fig. 3), we set

2 2
vzz%zs—gzconst.,where 1<v<a—2, (14)
c
1

and use the parameter t = —kz for representing the motion. Then, by virtue of (5), t is restricted
by the interval

max{b?,vc*,a?} <t <min{a®vb’} (15)

and ki1 = t/v. From (7) follows the parametrization p(t) by replacing (ki, k2) with (t/v, t).
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This implies for the trajectory of the center M of e
2

m(t) = u(t) p() with u(t) = 1—"’1—8. (16)

Now, we can express the motion of e in matrix form, in terms of position vectors xm w.r.t. the
moving space (attached to e) and xr w.r.t. the fixed space (attached to &), as

xt=m(t) + M(t) xm, Where M(t)zmzn, ”&”, ”:P”] (17)
2 1 P

The three column vectors of the orthogonal matrix M(t) are given in (9) and (8).

Note that this parametrization is valid only for points P in the octant x, y, z> 0. We get a closed
motion after appropriate reflections in the planes of symmetry (see Figs. 3 and 4). By the same
token, algebraic properties of this motion are reported in [2].

3 Moving ellipses on a one-sheeted hyperboloid

Also on hyperboloids and paraboloids, the conics in parallel planes are homothetic. However,
not in all cases the method, as used before for ellipsoids, can be applied since a point P either
does not exist or lies at infinity. Moreover, paraboloids have no center O. Below, we analyse
the motions of ellipses on a one-sheeted hyperboloid 71 and on an elliptic paraboloid 2 (see
Section 4). The motion of an ellipse on a two-sheeted hyperboloid works similar to that of
triaxial ellipsoids.t

For ellipses e i, there is no point P e #i1 with a tangent plane zr parallel to e. However,
we find an appropriate point P on the ‘conjugate’ two-sheeted hyperboloid 742 (Fig. 5).

Fig. 5. For ellipses e on a one-sheeted hyperboloid 74,

there does not exist a point P € F1
with a tangent plane zr parallel to the plane of e.

! The motion of a parabola on a hyperboloid is discussed in [4, p. 355-357].
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The hyperboloid F shares the asymptotic cone with 71, and therefore, the axes of the ellipse
e are parallel to the principal curvature directions of #> at P . The two hyperboloids satisfy the
respective equations

2 2

Xyt 7 X2yt oz

QD
(@]

with a > b. The quadrics confocal with 4> are given by

X2 y2 ZZ

— — -+ :1
a’—k b’-k c*+k

Again, this family sends through each point P outside of the planes of symmetry three mutually
orthogonal quadrics, one of each type. On the two-sheeted hyperboloid JH> with k = 0, we use
the parameters ko of the ellipsoid and ki of the one-sheeted hyperboloid as the elliptic
coordinates of P with

b? <k, <a®<Kk,.

Then, similar to Lemma 1, the ellipse e € i in the diameter plane parallel to 7, has the
semiaxes

a, =k, and b, =/, .
This is the smallest ellipse on 1 within the homothetic family.

If any ellipse with given semiaxes ae and be is to be moved on i, then the corresponding point
P e 7 has to trace a curve with proportional elliptic coordinates

. 2 . K2 2 .82
Kok =as:b5=a;:b;.

Similar to (7), we can parametrize the trajectory p(t) = (&, n, &) of Pby t:=ko> a? where

k a’

k D

hence k1 = t/v with b? < k1 < a2

Now we have to find the center M of the moving ellipse on the diameter line [F~>, O] : For each
P, the principal vertices of the ellipses in planes parallel to 7 are placed on a hyperbola, for

which the point P and one principal vertex in the plane through O are the endpoints of
conjugate diameters. If ac = a cosh X, then the position vector m of the center M of e and p

of the point P are related by m = sinh xp . Thus, we obtain

m=up with ,?="¢_1. (18)

Q |m9->w

TN
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Fig. 6. Movement of the ellipse e on the one-sheeted hyperboloid ..
The two principal vertices of e trace the same curve (green).

This yields, similar to (17), a parametrization for the motion of the ellipse e on J: (Fig. 6).
As a consequence of (18), on the trajectory of P only points with a; =k, <a’ are admitted.

Therefore, the parameter t = ko runs the interval

max{a®,vb*} <t < min{a?,va’}.

In the case a? <va®, the same phenomenon appears as mentioned above. When the parameter
t reaches a?, then, for continuing the motion of the ellipse, the point P either has to jump to

its antipode, or the scalar x in (18) must get a negative sign.

4 Moving ellipses on an elliptic paraboloid

The quadrics being confocal with an elliptic paraboloid can be represented as

x? y2 f 2 2
+—L __27-k=0 forkeR\{—a? —b?}.
a’+k b?+k M J
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In the case a > b > 0, this one-parameter family contains

—b? <k <o elliptic paraboloids,
for 1 —a* <k <—b* hyperboloc paraboloids, (20)
k <—a® elliptic paraboloids.

For each k, the vertex of the corresponding paraboloid has the coordinates (0, 0,—k/2). The point
(0, 0, b%2) is the common focal point of the principal sections in the plane x = 0, and
(0, 0, a%/2) is the analogue for the sections with y = 0. The limits for k = —b? or k — —a? define
the two focal parabolas (note [4, Fig. 7.5,]).

The family of confocal parabolas sends through each point P outside the planes of symmetry
x =0 and y = 0 three surfaces, one of each type. Like before in the case of confocal central
surfaces, we call the parameters of the three parabolas through P the elliptic coordinates of 2.
We focus on the elliptic paraboloid o with k = 0. Its points have the elliptic coordinates
(0, ki, k2), where

k, <-a’ <k, <—b’.

Conversely, if any point P € P is defined by the elliptic coordinates (ki, k2), then its Cartesian
coordinates ¢, , satisfy

_a’(a®+k)@* +k,)

2
g (a®—b?) ’
2= DOk k) (21)
CRE!
- a’+b%+k, +k,

2

The normal vectors np of 2o and vi of the paraboloid 2 with parameter ki, i = 1, 2, at the point
P are (note Fig. 7)

& 5
a2 a2+ki
n n
R N R o )
1 1

Also confocal paraboloids form a triply orthogonal system of surfaces, and consequently, they
intersect each other along lines of curvature. The vectors vi and vz in (22) define the principal
curvature directions at P.
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Fig. 7. Elliptic paraboloid Po with lines of curvature (blue), curves of constant
ratio of principal curvatures 1 : k2 (red), and direction vectors vi, v2
of the principal curvature tangents at the point P € 7.

Also confocal paraboloids form a triply orthogonal system of surfaces, and consequently, they
intersect each other along lines of curvature. The vectors vi and vz in (22) define the principal
curvature directions at P.

Lemma 2. Given aregular quadric Qo, let P € 9o be a point in general position with the tangent
plane zr to Qo. If Q1 and 9, are the remaining two confocal quadrics through P, the pole of zp
w.r.t. 9; is the center of curvature of the orthogonal section of Qo at P through the principal
curvature tangent tp orthogonal to 9>.

Proof. We can verify this by straight forward computation: Based on the parametrizations of
Qo by elliptic coordinates (ki, k2), as given in (7) for central quadrics and in (21) for paraboloids,
we compute the first and second fundamental form and the center of curvature (= Meusnier
point) for the orthogonal section of Qo through te (see, e.g., [3]).

A synthetic proof runs as follows: Let ¢ be the line of intersection between the confocal quadrics
Qo and Q1. Then, ¢ is a line of curvature for both. The developable T which contacts Qo along
¢ has generators orthogonal to c. Also the surface normals to 9o along ¢ form a developable N.
Its cuspidal points are the centers of curvature of the orthogonal sections of Qo through the
tangents to ¢ (note [4, p. 418ff]).

At the point P € ¢, the tangent te to c, the surface normal np to Qo, and the generator ge of 7~
are mutually orthogonal. Any two of them define the principal curvature directions at P for one
of the three confocal quadrics. For example, the lines gr and np are conjugate tangents of 9,
and therefore, even polar w.r.t. 9.
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The polarity w.r.t. Q- transforms the developable T through gp into a developable 7" through
np, while tangent planes = of T and Qo at points X e ¢ are sent to points X" of the cuspidal edge
¢, of T". The poles of each plane w.r.t. the quadrics of a confocal family lie on a line orthogonal
to the given plane (see, e.g., [4, p. 292]). Therefore, the Q2-pole X" of zx lies on the normal nx
of Qo at X. Consequently, the cuspidal edge ¢, of 77 is a curve on the developable /N. The
polarity w.r.t. Q; takes the generator gx — 7 to the tangent g’x to ¢, at X', which is also
a tangent of N.

Now we prove, that the cuspidal edge ¢, of 77 passes through the cuspidal point C, of
npc N

The tangent plane z» to T at P is the limit X — P of a plane connecting the generator gr with
any point of gx. By virtue of the polarity w.r.t. @, with 7 —T", the cuspidal point P’ € ¢, on
ne is the limit X — P of the point of intersection between np and any plane through g'x . As
noted before, the tangent plane [nx, tx] along nx to ZN'is such a plane, since it passes through
g'x. However, the limit X — P of the point of intersection np M [nx, tx] yields also the cuspidal
point C,, of np w.r.t. the developable /N. This means, that C ., equals the pole P’ of z» w.r.t. Q2.

]
We apply Lemma 2 to the elliptic paraboloid Po. The tangent plane z to Poat P = (&, #, {)
has the equation
Tp :§x+%y+z=;’.
Its pole w.r.t. the paraboloid 7; with parameter ki is
a’ +k
¥ =
b? + k.
C = b2'77:77+ki%' (23)
¢ +k; 3 1
This confirms that the principal curvatures of 7 at P are
K, =1/P—Ci=;’ where «;, > x, . (24)
ki ne |

Now we have to place a given ellipse e with semiaxes ae and be, where a?:b? =k, :k,, in a
plane parallel to zr in the correct way on Po. This means, the center M of e lies on the diameter
de of the paraboloid o and the major axis is parallel to the principal curvature tangent te in
direction vz, i.e., orthogonal to the paraboloid 7. through P (Fig. 7).
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The major axis lies in the plane ¢ spanned by tr and de. This plane intersects 7 along a parabola
p. Due to Meusnier’s theorem, we obtain the center of curvature P> of p at P as the pedal point
of Cz from (23) in ¢. Let p = PP* denote the radius of curvature at P (Fig. 8). Then the chord
S1S2 of p parallel to te through the midpoint of PP* has its midpoint So on the diameter de and
the length 2p.

Fig. 8. For a given parabola p with point P € p and corresponding center of curvature P *,
this is a construction of the endpoints S1, S2 on a particular chord of p.

This follows with the help of a shear, i.e., a perspective affine transformation in ¢ with te as
axis and the ideal point of te as its center. This shear transforms p into a parabola p’ which
osculates p at P. We can define a shear such that P becomes the vertex of p’. Then, the midpoint
of PP if the focal point of p’, and for p' the chord parallel to te through the focal point has the
length 2p. Under the inverse shear, the chord is just translated parallel to tp.

For the parabola p, the squared length of chords parallel to te is proportional to the distance
between P and the midpoint of the chord. According to Fig. 8, in our case the factor of

proportionality is known as S.S,” / PP, . Consequently, the respective position vectors p, so, and
m of P, So, and the center M of the wanted ellipse e are related by

2

m=p+%(so—p)- (25)

Now, we can parametrize the motion of a given ellipse e on 2% in the following way. By (24),
the given semiaxes define the locus of points P € 2o with proportional elliptic coordinates

2
v::k2=ae , Wwhere v>1.

P
In the same way as before, we use t := —kz as the motion parameter. Then the pair of elliptic
coordinates ki = t/v and k2 = t yields the trajectory p(t) of the point P € P by (21). For each
admissible t, we compute the Meusnier point Cz by (23) and then its pedal point C* in the

plane ¢, as described above. Finally, due to (25), we can find the correct position of the ellipse
e € Poin a plane parallel to z.
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Fig. 9. Ellipse e moving on the elliptic paraboloid 2o — displayed together
with the trajectories of the principal vertices of e (green)
and the related curve of constant ratio of principal curvatures (red).

We summarize:

Theorem 2. On regular quadrics @, all ellipses e other than circles can be moved, except on
a one-sheeted hyperboloid the gorge ellipse and on a triaxial ellipsoid the ellipse with the
longest and the shortest diameter as axes. During these motions, the points P € Q with a tangent
plane parallel to the plane of e trace curves with a constant ratio of elliptic coordinates on 9.
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Orthogonal axonometry: How can it be determined?

Maria Vojtekova, Ol'ga Blazekova

Abstrakt

Axonometrické zobrazenie je vhodna forma
dvojrozmernej reprezentacie trojrozmernych
objektov vyuzivana v technickom kresleni a
architektare. Cielom je uchovat priestorovy
dojem scény bez skreslenia sposobeného
vzdialenost'ou pozorovatela. V tomto ¢lanku
uvadzame nové moznosti urcenia kolmej
axonometrie, transformacné vztahy platné
medzi nimi a rovnice pre vypocet suradnic
priemetu obrazu bodu v kolmej axonometrii
na zéklade podmienok jej urcenia.

Kracové slova: premietanie, kolma
axonometria, rovnice zobrazenia

Abstract

In technical drawing and in architecture
axonometric projection is a form of a two-
dimensional  representation of three-
dimensional objects. The goal is to preserve
a spatial impression without distortion due to
the distance from an observer. In this paper
we give new possibilities to determine an
orthogonal axonometry, transformation
relations between them, and image equations
of a point in orthogonal axonometry based
on these options of determination.

Keywords: projection, orthogonal
axometry, image equation

1 Introduction

There are well-known examples of conics which can be moved on quadrics. Apart from the
trivial case of circles on a sphere, paraboloids are surfaces of translation, even with a continuum
of translational nets of parabolas. On quadrics of revolution, each planar section can be rotated
while it remains on the quadric. Technical drawings need to be precise, accurate and
unambiguous, so engineers and technicians use orthogonal projections (Monge projection,
Method of contouring, etc.). On the other hand, for most people it is hard to imagine an object
from e.g. Monge mapping. Drawings in linear perspective give a feeling of reality, but there is
a problem in change of size of objects depending on the distance from the observer [1]. The
compromise is an axonometry with its fixed relation between sizes of objects in space and those
on projected space and its good visualization.

Axonometry originated in China. Some concepts of axonometry (especially isometry) had
existed in a rough empirical form for centuries well before William Farish (1759-1837),
professor at Cambridge University, who was the first to provide detailed rules for isometric
drawing. Farish published his ideas in 1822 in paper "On Isometrical Perspective", in which he
recognized "need for accurate technical working drawings free of optical distortion” [2]. Since
then axonometry became an important graphic technique for artists, architects, and engineers.
It usually comes as a standard feature of CAD systems and other visual computing tools.

2 Principle of axonometry

Axonometry is a graphical procedure belonging to descriptive geometry that generates a planar
image of a three-dimensional object. The term "axonometry” means "to measure along axes",
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and indicates that the dimensions and scaling of the coordinate axes play a crucial role.
Axonometry is a parallel projection of a space onto one plane, into which we also project base
elements of the coordinate system attached to the object.

Let the Cartesian coordinate system with the origin 0, axes x,y,z and planes = = (x,y),
v =(x,z),u = (y,z) be given in the Euclidean space. Axonometric image plane p will be
determined as a plane that is not parallel to any axis and let direction § be not parallel to the
plane p. Let the positive semi axes intersect image plane p at the points X,Y and Z. Image of
the origin O in parallel projection onto the plane p in direction s will be denoted 0,, images of
the coordinate axes x, y, z by x,, v, 2, (Fig. 1).

Fig. 1. Axonometric projection

Three points X, Y, Z form the axonometric triangle and lines x,, y,, z, form the axonometric
axial cross. The drawing plane can be identical to the plane p, or a plane parallel to the plane
p. By shifting of the drawing plane in the projection direction s, one changes only the size of
the axonometric triangle XYZ, but the projection of the axonometric axial cross does not
change. The coordinate axis z, is usually drawn vertically. All axonometric triangles are
homothetic with the centre at point O, and they determine the same axonometry. Let the images
of a measurement unit on axes x, y, z are denoted by p, g, r. The question is, whether one can
situate them in the drawing plane arbitrarily. The answer is given by Pohlke’s theorem: The
three line segments with a common beginning point and not contained in a line, can be
considered as a parallel projection of the three adjacent edges of a cube, see for instance [3].
Following formula is valid for the values p, g, r denoted as coefficients of change

p?+q*+71r? =2+ cotg?é, (1)

where 6 is the angle between the projection direction and the image plane. Proof of this famous
theorem may be found for example in [3]. If the direction of projection is perpendicular to the
image plane, axonometry is said to be normal or orthogonal (English literature usually refers to
it as “axonometric projection’) [4]; otherwise it is said to be skew.
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3 Orthogonal axonometry

We worked on these theorems about orthogonal axonometry:
e Axonometric triangle XYZ is an acute-angled triangle.
e The axes x,, y,, z, are altitudes in the triangle XYZ and the point O, is its orthocenter.
e p,q,7€(01).
e p2+qgt+ri=2. )

Proofs can be found e.g. in [5].

An orthogonal axonometry is graphically given in a drawing plane by any of the following:
a) axonometric triangle,
b) axonometric axial cross.

Our objective was to analyse various options of determining an orthogonal axonometry, to
establish transformation relations between them, and to compute planar coordinates of
axonometric image of an arbitrary point.

Let the Cartesian coordinate base (0’, x", y") with the origin 0" = 0, and y" = z, be given in
the image plane. Orthogonal axonometry may be determined by:

a) values of angles a,B (Fig. 2); a =1 —x(xy,x), B =<2(y,x), a € (0,1/2),
B € (0,mt/2), and a + B < /2. Intervals for values of angles follow from Pohlke’s
theorem and the property that the axonometric triangle XYZ is acute-angled, the proof
can found in [6]. This option of definition is the same as an orthogonal axonometry
given graphically by an axonometric axial cross, e.9. (x4, ¥4), <(Z4, Va)-

A

Yy = Za

Fig. 2. Axonometric triangle and axes Fig. 3. Angles ¢ and y

b) values of p,q,7; p,q,r € (0,1) while only two of them are required, as the third one
can be calculated from formula p? + % + % = 2.
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c) lengths of sides of axonometric triangle, whereby only the ratio of them
|XY|:|YZ|:1ZX]| is necessary, because parallel image planes intersect axes x,y,z in
homothetic axonometric triangles.

d) values of angles ¢,y (Fig. 3); the angles represent the second and the third spherical
coordinate of the point O, in space (the first spherical coordinate - the length of the line
segment 00, does not play any role, because parallel image planes intersect axes x, y, z
in homothetic axonometric triangles). In general, the angle ¢ € (0, 2m), without loss of
generality we can assume the front view, ¢ € (0,1m/2), and the view from top,
Y € (0,m/2), since the goal of projection is a good visualization. Other options have
similar calculations.

It is understood that length of p,q,r may be graphically determined by the rotation of the
coordinate plane = = (x, y) to the image plane p around the line XY (Fig. 2), O, is the rotated
position of the origin 0, 0,X and O, Y are perpendicular, and the values of p, g can be calculated
as ratios of the projected and rotated images

_[0.X]
O X[

0.

a

o]’ ©

p q=

Analogously, the length of r is determined by the rotation of the plane defined by points O, P, Z
to the image plane p around the axis z, (Fig. 2). The line PO, " is perpendicular to the line 0,"Z
and

a

_lo.z|
o,z

: (4)

r

The constructions mentioned above are described in detail in [7].
The angles a, B, @,y are denoted in Fig. 2, being

@ = 2X0,P, P = <P0, 0,,.

To deduce relations between defining options one must consider the following statements:

sing = [ XP| in the triangle XO,P, cosa = [ XP| in the triangle XO,P, cosg = [¥P) in the
XO, @) YO

o| a| °|

triangle YO, P and cos g = %P“ in the triangle YO, P give the equations

sing =pcosa, (5)
cos@ =qcosf. (6)

-,

Since cosy = %_? in the triangle 0,0,°Z, one may express
0

cosy =r. @)
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The length of the line segment OP can be expressed by the lengths of line segments

|o,P

=|0P). 8)
Values of the inner angles in the axonometric triangle XYZ are n/2 — B, n/2 —a,a + .

The following theorems and formulas are considered in order to deduce transformation
relations:

Goniometric functions in a right-angled triangle;

Euclid’s theorems about the altitude and the leg in a right-angled triangle;

Sine formula and cosine formula for a triangle;

Formulas for calculation of an area of a triangle.

We deduced each of the twelve transformation relations with the aid of previous statements. To
determine angles «, 8, ¢, ¥, only one goniometric function is needed because all of them are in
the interval (0, 1t/2).

4 Transformation relations

a) Knowing the angles a, B the values p, g, r are sought.
Considering |X0,|% = |XY| - |XP|, |YO,|? = |XY|-|YP|, |PO,|?> = |XP|-|YP]| in the

triangle XY0,, cosa = [ XP| in the triangle XPO,, sin g =M in the triangle XYN

[XO,| XY

in the triangle X0, N, we calculate

and sin(a+ B) = ||))(((I;I|

a

, _[xof |xof XO,| 1 _[XQ,| sing sin B )
a X0, C[XY[|XP|  |XY| cosa cosa |XN| cosa-sin(a+pB)
Similarly considering the triangles YPO,XYM,Y0,M we deduce
) sina
= . 10
| cos S-sin(a + f3) (10
Using Eq. (6), (8) and relations in the triangles PO,"0,, XPO,, YPO, we calculate
: PO, |’
r? =cos?y =1-sin? =1—|—a=
4 4 |POO’|2
: (12)
_1_|Poa| _1_|Poa||POa| —1—tga tgﬁ
Po[" ~ |XP[[YP| |

The value r can be also obtained from (2).
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b) Knowing the angles «, B the ratios of sides of axonometric triangle |XY|: |YZ|: |ZX| are
sought by using sine formula for the inner angles of the axonometric triangle

|XY|:|YZ]|:|ZX]| = sin(a + B) : sin G —B) :sin G — a) =
=sin(a+ f):cosfB:cosa. (12)

c) Knowing the angles a, 8 the angles ¢,y are sought.

d)
[ XP|
o PO, _ |[XP[[YP| _ [O,P| _ cotger (13)
PY[?  |PY[  [YP|  cotgp
[O.P|

Considering equation (11) siny is found
sin®y =1-cos’ v =tga -tgps. (14)

e) Knowing the values p, g, r the angles «, § are sought.
Firstly by aid of relations in the triangles 0,PX, X0,P, 0,PY,YO,P we calculate

psina = siny - cos @, (15)
gsinf =siny -sing . (16)
Applying (15), (7) and (5) we obtain

(1-p)(-r") -

p2r2

sin“a =
Likewise applying (16), (4) and (6) we find

sinzﬂ:w, (18)

q2r2

f)  Knowing the values p, g, r the ratios of sides of axonometric triangle |XY|: |YZ|: |ZX|
are sought. Substituting (17) and (18) into (12) ratios can be expressed as

|XY|:|YZ|:|ZX|=\/1_r2 AL g (19)
Pq rq rp
|XY|:|YZ|:|ZX]|= rN1-r?: p\fl— p’ :q\/l—q2 . (20)
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g) Knowing the values p, g, r the angles ¢, ¥ are sought.
Applying (6) and (18) we have

1- p? _ . 1-q°
cosgp =-~——, respectively sing= .
r r

(21)

Referring to (7), it holds cosy =r.

h) Knowing the sides of the axonometric triangle |XY|, |YZ|, |ZX| or their ratio, angles «,
are sought. There are more possibilities to find them. The first one uses cosine formula
for the inner angles in the axonometric triangle

sinﬁ—cos(f—ﬁj—|ZX|2+|XY|2—|ZY|2 -
2 7)) 2xy||lzx|
2 2 2
sina:cos(E—aJ=|ZY| +|XY| _|ZX| . (23)
2 2|XY||zY|
Other possibility is to apply Heron's formula for the area S of the triangle XYZ
. (m 2S
= Z_pl=— 24
cos 8 sm(2 ﬁ} V]2 (24)
COSa:sin(E—aJ:A. (25)
2 |XY||ZY|

i) Knowing the sides of axonometric triangle |XY|,|YZ|,|ZX| or their ratio, p,q,r are
sought. Applying equations (9), (24), (25) we get

, Ivzf \/|xv|z|zx|2 _48?
B 482

p , (26)

, |2xF \/|XY|2 vz[ —as?
B 452 '

q (27)

The value r is obtained from (2).

j)  Knowing the sides of axonometric triangle |XY|, |YZ|, |ZX| or their ratio, the angles ¢,
are sought. Applying (5), (26), (7) and (14) we express

JIXYF|zX [ -4s?

sin“p =

(28)
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\/(|XY|2 VZ[* -48? (Y[ [2X[ - 457)

siny =
v 45°

(29)

k) Knowing the angles ¢, the angles «, 8 are sought. By using (5), (6), (15) and (16) we

have
tga = siny cotg ¢, (30)
tgp = siny tgo. (31)
I) Knowing the angles ¢,y the values p, g, r are sought. By using (5), (6), (15) and (16)
we calculate
p? =1 — cos?¢ cos?y, (32)
q? = 1 — sin?¢ cos?y. (33)

Referring to (7), cosy =r.

m) Knowing the angles ¢, 1 the ratios of sides of axonometric triangle |XY|: |YZ|: |ZX| are
sought. Applying of (5), (6), (15), (16), (32) and (33) we express

|XY|:[YZ]:|ZX|=siny : pcosg:qsing =

H 2 2 H Y, 2 H (34)
:smw:\/l—cos ¢ C0S l//'COSgDZ\/l—SIn @CoS“y -Sing.

A
Yy =24
Aq
O =0,
) "~
px *
Lg \\\ ﬁ qy
.. Xcr’,"
~ P Ya
-
Ala

Fig. 4. Projection of the point A

5 Image equations of a point in an orthogonal axonometry

Image equations of a point with coordinates A[x, y, z] into a plane with Cartesian base 0, x’, y’
in an orthogonal axonometry (Fig. 4) are [6]:
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X=—pcosa-X+qcosf-y ,

y=—psina-x—qsinB-y+r-z . (35)

Determining only the angles «,  and applying (9) and (10) we express
_[sinfcosa sinacos 8
sin(a+ sin(a+f
. s(inﬂsir)12a ( si:msinZ,B e v—— (%)

y:_\/COSaSin(a+,B) 'X_\/cosﬂsin(oﬁﬂ) yryl-tgatgs-z.
Determining the angles ¢,y and applying (15), (16) the image equations are

)3: ::: Z.c);:;(-)i(i's)i/n ;//sin @-y+COSy -7 . 37)
Determining the values p, g, r and applying (21) the image equations are

x'=—ﬁ-x+ﬁ'y ,

(38)

r r
' 2 ' 2
y'=—1-r? %»x—«/l—r2 % y+r-z.

Calculation of image equations for the option of specifying orthogonal axonometry by lengths
of an axonometric triangle is possible. It is, however uselessly intricate and not very often used
in computer graphics.

6 Conclusions

We pointed out advantage of axonometry in comparison to Monge projection and linear
perspective. Various options were shown how orthogonal axonometry could be determined
regarding to image equations of a point. Our main goal was to deduce transformation relations
between four considered options: the angles «, § formed by axonometric images of axes and
Cartesian planar axes in the image plane; the values of coefficients of change - p,q,r; the
lengths of sides of axonometric triangle or their ratio; and the angles ¢, ¥ determining position
of the image plane in the space.

Finally, we derived formulas for calculation of coordinates of axonometric image of and
arbitrary space point using various possibilities of orthogonal axonometry specification.
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Abstracts

M. Bizzarri, M. Lavicka, J. Vrsek: Note on determining approximate symmetries of
planar algebraic curves with inexact coefficients

This paper is devoted to a certain modification of the recently published method for an
approximate reconstruction of inexact planar curves which are assumed to be perturbations
of some unknown planar symmetric curves. The input curve is given by a perturbed
polynomial and the reconstruction steps follow the results from the recently published
papers. The functionality of the designed approach is presented on particular examples.

P. Magrone: Sierpinski’s curve: a (beautiful) paradigm of recursion

This paper focuses on the original articles written by Waclaw Sierpinski in 1915, when he
introduced the recursive structure that bears his name, the Sierpinski’s triangle. His first aim
was to exhibit the example of a new set, a curve traced starting from the geometry of the
well-known triangle. The triangle, which embodies geometric recursion, was rigorously
defined in 1915, but appeared also before Sierpinski, and is still a reference point for
scientists.

H. Stachel: Moving ellipses on quadrics

For each regular quadric in the Euclidean 3-space, there is a three-parameter set of cutting
planes, but the size of an ellipse or hyperbola depends only on its two semiaxes. Therefore,
on each quadric Q there exist ellipses or hyperbolas with a one-parameter set of congruent
copies, which can even be moved into each other. For the case of ellipses, we present
parametrizations of motions on ellipsoids, hyperboloids, and paraboloids. These motions are
closely related to the theory of confocal quadrics.

M. Vojtekova, O. Blazekova: Orthogonal axonometry: How can it be determined?

In technical drawing and in architecture axonometric projection is a form of two-dimensional
representation of three-dimensional objects. The goal is to preserve a spatial impression
without distortion due to the distance from an observer. In this paper we give new
possibilities to determine an orthogonal axonometry, transformation relations between them,
and image equations of a point in orthogonal axonometry based on these options of
determination.
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