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Note on determining approximate symmetries of planar
algebraic curves with inexact coefficients

Michal Bizzarri, Miroslav Lávička, Jan Vršek

Abstrakt Abstract
Tento článok∗ sa venuje istým modifikáciám
nedávno publikovanej metódy aproximačnej
rekonštrukcie nepresných rovinných kriviek,
ktoré sú považované za perturbácie istých
neznámych rovinných súmerných kriviek.
Vstupná krivka je určená nepresným
polynómom a kroky rekonštrukcie nadväzujú
na výsledky nedávno publikovaných článkov
[6, 7]. Funkčnost’ navrhnutého prı́stupu je
dokumentovaná na niekol’kých konkrétnych
prı́kladoch.

This paper∗ is devoted to a certain
modification of the recently published
method for an approximate reconstruction
of inexact planar curves which are assumed
to be perturbations of some unknown planar
symmetric curves. The input curve is given by
a perturbed polynomial and the reconstruction
steps follow the results from the recently
published papers [6, 7]. The functionality
of the designed approach is presented on
particular examples.

Kl’účové slová: rovinné algebraické krivky,
vyhl’adávanie súmernostı́, harmonické
polynómy, Laplaceov operátor, aproximácia

Keywords: planar algebraic curves,
symmetry detection, harmonic polynomials,
Laplace operator, approximation

1 Introduction and motivation

This paper is devoted to the symmetries of planar curves with inexact coefficients. Being
symmetric is a very useful feature which many real shapes possess and symmetries in the
natural world have significantly inspired people when producing tools, buildings, artwork etc.
An object has symmetry if there is a transformation (such as translation, rotation, reflection
etc.) that maps the object onto itself (i.e., the object has an invariance under the geometric
transformation). It is very important to be able to detect symmetry in geometrical models, both
from theoretical and practical point of view.

Problems dealing with symmetry detection and computation are often addressed in papers
coming from applied fields such as Computer Aided Geometric Design, Pattern Recognition
or Computer Vision, see [1, 5, 6] for the exhaustive list of references. In fields such as Patter
Recognition or Computer Vision especially the problem of detecting similarity is essential
because objects must be recognized regardless of their position and scale. In geometric
modelling, symmetry is important on its own right, since it is a distinguished feature of the

∗Expanded version of the contribution to the Proceedings of the Slovak–Czech Conference on Geometry and
Graphics 2019 (Trenčianske Teplice, September 2019).
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shape of an object. Nonetheless it is also important in terms of storing or managing images,
because knowing the symmetries of an image allows the machine to reconstruct the object at a
lower computational or memory cost.

The symmetry problem has been addressed simultaneously by computer science and
mathematics researchers. Whereas computer science typically processes set of points or
meshes, mathematics is mainly interested in objects described by equations. Recent research
has focused for instance on efficient algorithms for finding congruences and symmetries of
large point sets generated by 3D scans. The computation of symmetries and equivalences of
rational algebraic varieties also experienced a significant increase of interest as these objects
are very important in geometric modelling and related applications. One can find many papers
devoted to the detection and computation of symmetries and some equivalences of curves, see
e.g. [9, 8, 11, 10], or recent series of papers [1, 2, 3, 4, 5]. The problem of deterministically
computing the symmetries of a given planar algebraic curve was recently studied in [6].

As mentioned before, many real world shapes exhibit a symmetry. However, in most cases this
symmetry is not perfect but only approximate – which may happen, for instance, when some
input error (or some error caused by numerical computations) occurs. And, of course, in this
situations all subsequent exact algorithms and scenarios formulated for algebraic curves with
symmetries fail. Recently, see [7], we designed an algorithm for an approximate reconstruction
of an inexact planar curve which is assumed to be a perturbation of some unknown planar
curve. The initial step of the reconstruction algorithm is to find a suitable approximate centre
of symmetry and a particular regular m-gon to whose group of symmetries the group of
symmetries of the curve is isomorphic. In this paper, we modify the part devoted to finding the
approximate centre of symmetry and present an alternative approach that more closely matches
the original exact algorithm based on computing with Laplace operator, cf. [6].

The rest of the paper is organized as follows. Section 2 recalls some basic facts concerning
algebraic curves and their symmetries. We also recall the approach that uses the Laplace
operator for determining symmetries of algebraic curves. Section 3 is devoted to the
modification of the method formulated originally for exact algebraic curves. The designed
method is presented on several examples in Section 4. Finally, we conclude the paper in Section
5.

2 Preliminaries

First we recall selected elementary notions, basic properties and suitable methods whose
knowledge is further assumed.

2.1 Symmetric algebraic curves in plane

A planar algebraic curve C is a subset of E2
R defined as the zeroset of a polynomial f(x, y). We

will assume that f has real coefficients, is irreducible over C and dimR C = 1. Any isometry
φ ∈ Iso2 of E2

R possesses the form x 7→ Ax + b, where A ∈ O(R, 2) and b ∈ R2. For
det(A) = 1, or = −1 we speak about direct, or indirect isometries, respectively.

We write Sym(C) for the group of symmetries of the curve C, i.e.,

Sym(C) := {φ ∈ Iso2; φ(C) = C}. (1)

6 G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 5 – 16
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It is well known that Sym(C) is finite unless C is a union of parallel lines or a union of
concentric circles. Moreover, if Sym(C) is finite then it is isomorphic to a subgroup of the
group of symmetries of some regular m-gon, m ≤ deg(C). In what follows we are interested
solely in curves with a finite group of symmetries. The elements of a finite symmetry group are
rotations (all of them with the same center) and reflections (axes of all of them passing through
the same point).

Analogously we introduce Sym(f) by the relation

Sym(f) := {φ ∈ Iso2; f ◦ φ = λf}, (2)

where λ 6= 0 is a constant.

We recall the following statement, which can be efficiently used to verify whether φ ∈ Sym(C),
see [6] for more details:

Proposition 2.1. An isometry φ ∈ Sym(C) if and only if f(Ax + b) = λf(x), where λ = 1
or λ = −1.

2.2 Symmetries of planar curves via harmonic polynomials

We start with recalling the exact approach which has been formulated recently. For the sake
of brevity we will mention only basic steps and a generic scenario; the reader who is more
interested in this topic is kindly referred to [6], where all proofs and further explanations can be
found.

In general, it is not easy to find symmetries φ belonging to Sym(C) directly and one has to apply
a suitable computational approach – for instance to find some new polynomial h(x, y) such that
Sym(h) is finite, easy to determine (i.e., easier then Sym(f)) and Sym(C) = Sym(f) ⊂
Sym(h). In [6], a successive application of the Laplace operator yielding the sequence

f 7−→ 4f 7−→ 42f 7−→ · · · 7−→ 4`f = h, (3)

and followed by the associated chain of groups of symmetries

Sym(f) ⊂ Sym(4f) ⊂ Sym(42f) ⊂ · · · ⊂ Sym(4`f) = Sym(h), (4)

was efficiently used for finding such a polynomial h. Application of this technique is justified
by the fact that the Laplace operator as a linear mapping4 : R[x, y]→ R[x, y] defined by

4f =
∂2f

∂x2
+
∂2f

∂y2
(5)

commutes with isometries, i.e., it holds

(4f) ◦ φ = 4(f ◦ φ). (6)

A polynomial h satisfying4h = 0 is called harmonic. By repeatedly computing the Laplacian,
cf. (3), in general we come down to either harmonic polynomials, or conic sections, or lines. All
situations are discussed in the original paper, here we recall only the most interesting part, i.e.,
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when one arrives at a harmonic polynomial h. We recall that if h is harmonic and deg(h) > 1
then Sym(h) is finite.

Next, we identify C with R2 via z = x + iy ↔ (x, y). For a polynomial h(x, y) we consider a
complex function

g(x, y) = ∂xh− i∂yh, (7)

where ∂xh, ∂yh represent the partial derivatives of h with respect to x, y. The standard
substitution

x =
1

2
(z + z) and y = − i

2
(z − z) (8)

allows to write g(x, y) as a complex function g(z, z) in the complex variable z. Moreover, as h is
harmonic then g(x, y) satisfies the Cauchy-Riemann conditions and thus g(x, y) is holomorphic
and g(z, z) does not depend on z, i.e.,

g(z, z) = g(z) =
δ∑
j=0

bjz
j. (9)

The roots of g(z) yield the singular points of the vector field (∂xh,−∂yh). As any φ ∈ Sym(h)
maps real singular points of the considered vector field onto real singular points of this field, we
finally obtain

Sym(h) ⊂ Sym(Σ), (10)

where Σ = {ζ1, . . . , ζδ} ⊂ C is the set of all roots of g(z) (counted with multiplicity).
Symmetries of h(x, y) are then derived from Σ, resp. g(z). For instance, a possible center
of any rotational symmetry of h(x, y) is encoded in the barycenter of Σ, i.e.,

p =
1

δ

δ∑
i=1

ζi. (11)

In addition, using Vieta’s formulas on g(z), one can see that the computation of the roots is not
necessary and we obtain

p = −bδ−1

δbδ
. (12)

Potential candidates for the rotation angle are of the type 2π
m

, where m ≤ δ + 1 = deg(h).

Similarly, a method how to determine the potential axes of symmetry of h(x, y) from the
coefficients of g(z) is also presented in [6].

3 Formulation of the problem and modified algorithm

In paper [6] exact symmetries of algebraic curves in plane were studied. Recently, this problem
has been extended in [7] also to approximate symmetries. In latter case, the input to the
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algorithm is a planar curve C which is a perturbation of some unknown symmetric planar curve
C0. This perturbed curve is described by a polynomial f(x, y) of degree d, i.e.,

C : f(x, y) =
d∑

i,j≥ 0
i+j≤d

ai,jx
iyj = 0, aij ∈ R. (13)

For various purposes, it is often useful to consider curves in the projective plane. Every affine
algebraic curve of equation f(x, y) = 0 may be completed into the projective curve of equation
F (X, Y, Z) = 0, where

F (X, Y, Z) = Zdf (X/Z, Y/Z) =
d∑

i,j,k≥ 0
i+j+k=d

ai,jX
iY jZk (14)

is the result of the homogenization of f and X : Y : Z are the homogeneous coordinates in
the projective plane. Let us write c = (ad,0 : ad−1,1 : · · · : a00) and we say that c represents C.
The space of all planar projective curves of degree d can be identified with the projective space
PN−1
R , where N =

(
d+2
2

)
.

The perturbed curve C possesses no symmetries. Nonetheless, the original curve C0 was by
assumption symmetric and thus using the exact approach, recalled in the previous section, one
could arrive at a distinguished point p (a center of any possible rotation, or a point through
which the axes of reflection are passing). The following strategy for approximate reconstruction
of C0 was suggested in [7] (for more details see the original reference):

(a) Determine a point p̃ (the approximate center) and an integer m (the number of vertices of
a regular polygon) from the known perturbed curve C;

(b) Construct a new curve C̃ having the symmetry of an m-gon with the center at p̃ and being
as close as possible to the given perturbed curve C.

(c) Determine all the symmetries of the computed exact symmetric curve C̃ to obtain the
approximate symmetries of the perturbed curve C.

In this paper we focus on the crucial part of the algorithm and formulate an alternative approach
for determining a suitable approximate center of symmetry p̃ of the resulting curve C̃, i.e., we
will deal with step (a) solely. Computing m is not part of this modified approach – one has
to consider all m from 2 to d and consequently choose the best approximation. The remaining
parts of the original algorithm remain the same.

Unlike in [7], we formulate the approach based on applying a sequence of Laplacians, see (3) –
which was the method used originally in paper on exact symmetries, cf. [6]. From this reason
we assume that the original symmetric curve C0 was transformable by the chain of Laplacians
to a harmonic curve satisfying (3). As another new contribution, we solve the problem using
complex variables.

First we substitute (8) into f(x, y) which allows to write it as a complex function f(z, z) in the
complex variable z in the form

f(z, z) =
d∑
i=0

d−i∑
j=0

mi,jz
izj, (15)

G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 5 – 16 9
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or in the following matrix form

f(z, z̄) = (1, z, z2, . . . , zd)M


1
z̄
z̄2

...
z̄d

 , (16)

where mi,j = mj,i ∈ C, and mi,i = mi,i ∈ R, cf. [12] for further details.

Let us emphasize that, in this case, M is a Hermitian matrix with a zero submatrix 0(d−`)×(d−`),
i.e., it possesses the following structure

M =



m0,0 m1,0 . . . m`,0 m`+1,0 . . . mk,0 mk+1,0 . . . md−1,0 md,0

m1,0 m1,1 . . . m`,1 m`+1,1 . . . mk,1 mk+1,1 . . . md−1,1 0
...

... . . . ...
...

...
...

...
...

m`,0 m`,1 . . . m`,` m`+1,` . . . mk,` 0 . . . 0 0

m`+1,0 m`+1,1 . . . m`+1,` 0 . . . 0 0 . . . 0 0
m`+2,0 m`+2,1 . . . m`+2,` 0 . . . 0 0 . . . 0 0

...
... . . . ...

... . . . ...
... . . . ...

...
mk,0 mk,1 . . . mk,` 0 . . . 0 0 . . . 0 0
mk+1,0 mk+1,1 . . . 0 0 . . . 0 0 . . . 0 0

...
... . . . ...

... . . . ...
... . . . ...

...
md−1,0 md−1,1 . . . 0 0 . . . 0 0 . . . 0 0
md,0 0 . . . 0 0 . . . 0 0 . . . 0 0



,

The reason why M contains the block of zeros follows from the assumption that the chain (3)
ends with a harmonic polynomial and from fact how the Laplacian operator works in complex
variables. i.e.,

4f(z, z̄) = 4
∂

∂z

∂f

∂z̄
. (17)

Therefore we obtain

4f(z, z̄) = (1, z, z2, . . . , zd−2)M1


1
z̄
z̄2
...

z̄d−2

 , (18)

where M1 is of the form

10 G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 5 – 16
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M1 = 4



m1,1 . . . `m`,1 (`+ 1)m +̀1,1 . . . k mk,1 (k + 1)mk+1,1 . . . (d− 1)md−1,1
... . . . ...

...
...

...
...

`m`,1 . . . `2m`,` `(`+1)m +̀1,` . . . `k mk,` 0 . . . 0

(`+ 1)m +̀1,0 . . . (`+ 1)`m +̀1,` 0 . . . 0 0 . . . 0
... . . . ...

... . . . ...
... . . . ...

kmk,0 . . . k`mk,` 0 . . . 0 0 . . . 0
(k + 1)mk+1,0 . . . 0 0 . . . 0 0 . . . 0

... . . . ...
... . . . ...

... . . . ...
(d− 1)md−1,0 . . . 0 0 . . . 0 0 . . . 0


.

Hence, the chain of Laplacians (3) can be replaced by the chain of matrices

M 7−→M1 7−→M2 7−→ · · · 7−→M`, (19)

where the matrix M` of a harmonic polynomial of degree k − ` has the form

M` = 4``2



(
`
`

)
m`,`

(
`+1
`

)
m`+1,` . . .

(
k
`

)
mk,` 0 . . . 0(

`+1
`

)
m`+1,` 0 . . . 0 0 . . . 0
...

... . . . ...
... . . . ...(

k
`

)
mk,` 0 . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 0
...

... . . . ...
... . . . ...

0 0 . . . 0 0 . . . 0


. (20)

Let us recall that it was assumed that the sequence is ending with a harmonic polynomial.
Then it is evident that the harmonic polynomial h = 4`f in the chain (including the values of
k, `) can be easily identified from the position of the block of zeros in the original matrix M.
Moreover, we will see that the center can be decoded from the matrix M, as well.

Following the previous approach we write polynomial (9) associated to the harmonic
polynomial h given by the matrix M`. It holds

∂h

∂z
=

1

2
(∂xh− i∂yh) , (21)

and thus we obtain

g(z) = 2
∂h

∂z
= 2 · 4``2

k−`−1∑
i=0

(i+ 1)

(
i+ `+ 1

`

)
mi+`+1,`z

i. (22)

Finally using expression (12) we arrive at the center of symmetry of the curve C

p =
−1

k − `− 1
·

(k − `− 1)
(
k−1
`

)
mk−1,`

(k − `)
(
k
`

)
mk,`

= −mk−1,`

kmk,`

. (23)

Next we consider a perturbation of the original symmetric curve. This influences also the matrix
M which contains a block of “almost zeros”, now. Our goal is to identify this almost-zero-
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submatrix and set it as zero matrix. This yields a new curve C̃ described by the equation

C̃ : (1, z, z2, . . . , zd)


m0,0 . . . m`,0 . . .

... . . . ... . . .
m`,0 . . . m`,` . . .

... . . . ... 0




1
z̄
z̄2

...
z̄d

 = 0. (24)

Then we continue as in the exact case, determine the point (23) and set it as the approximate
center p̃.

Moreover, the previous result implies that the perturbation of the center is not worsen by
applying the sequence of Laplacians and it respects the order of perturbation of the coefficients
of the original curve. For this purpose, we recall some details dealing with the error propagation
during computing with inexact quantities. Consider A = a + α, B = b + β, where α � a,
β � b and |α| ≤ ε, |β| ≤ ε. Then it holds∣∣∣∣AB − a

b

∣∣∣∣ . (a+ b)ε

b2
(25)

and we can formulate the following assertion.

Lemma 3.1. For the error ε1 of the centre of the symmetric curve whose coefficients are given
with maximal error ε it holds

ε1 .
(mk1,` +mk,l)ε

k2m2
k,`

. (26)

The final step of the reconstruction algorithm is to find a suitable symmetric curve C̃ sufficiently
“close” to the given perturbed curve C when the center p̃ of C̃ is prescribed. From this part, we
may follow the approach designed in [7]. In particular, we construct a basis of all curves of
degree d with the rotational symmetry of m-gon and with the center of rotation p̃, and compute
the orthogonal projection of the perturbed curve to the space spanned by the spanned basis, see
[7] for all necessary details.

To measure suitably a quality of the approximation (i.e., the deviation δ between the perturbed
and the constructed curve) we will apply the standard metric used for computing the distance
between the points c̃, c in the projective space of algebraic curves of degree d, in particular

δ(c̃, c) = arccos

(
|c̃ · c|
‖c̃‖‖c‖

)
, (27)

where ‘·’ and ‖ ‖ denote the standard inner product and the standard norm in the corresponding
vector space. The angle δ is real-valued, and runs from 0 to π

2
.

4 Computed examples

In this section we present the designed modification of the original approach from [7] on some
commented examples.
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Fig. 1. Four non-symmetric curves (blue) given by perturbing the unknown
symmetric curves and the corresponding closest symmetric curves
(green) with the guessed centers (black) of the symmetries.

Example: Consider a quartic curve C given by a polynomial with floating coefficients (which
is a perturbation of a certain unknown symmetric curve), see Fig. 1 (top, left)

f = 13x2y2 − 64x3y − 167.4x2y − 17x4 − 136.4x3 − 289.4x2 + 15.4xy3

+ 73xy2 − 96.5xy − 227.1x+ 13.2y4 + 72.5y3 + 157.7y2 + 91.6y − 39.4.

First, we transform f into the complex representation, cf. (8), and use the matrix form (16) –
for the sake of compactness we display the coefficients of the matrices with one decimal place
only.

M ≈


−39.4 −113.6 + 45.8i −111.8− 24.1i −26.2− 30i −1.1− 5i

−113.6− 45.8i −65.8 −42 + 6.3i −7.6− 6.1i 0
−111.8 + 24.1i −42− 6.3i 0.2 0 0
−26.2 + 30i −7.6 + 6.1i 0 0 0
−1.1 + 5i 0 0 0 0

 .

Next, we find the maximal almost-zero-submatrix in M and create a new one with this

G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 5 – 16 13
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submatrix being exactly-zero.
−39.4 −113.6 + 45.8i −111.8− 24.1i −26.2− 30i −1.1− 5i

−113.6− 45.8i −65.8 −42 + 6.3i −7.6− 6.1i 0
−111.8 + 24.1i −42− 6.3i 0 0 0
−26.2 + 30i −7.6 + 6.1i 0 0 0
−1.1 + 5i 0 0 0 0

 .

Hence we have ` = 1 and k = 3 and using (23) we obtain an approximate center of symmetry

p
.
= (−0.991,−1.074). (28)

Subsequently projecting C to all curves with the symmetry of m-gon with the center p, where
m ∈ {2, 3, 4}, we obtain the best solution for m = 2, see Fig. 1. The deviation angle (27) is
approximately equal to 0.35.

Example: We have a non-symmetric cubic curve C, see Fig. 1 (top, right) given by the
polynomial

f = −6.8x2y + 17.1x3 − 102.1x2 − 53.9xy2 + 131.7xy

+ 138x + 2.4y3 + 101.3y2 − 233.3y − 3.7.

The matrix form (16) of the complex representation of f looks as follows (we again display the
coefficients of the matrices with one decimal place only)

M ≈


−3.7 69 − 116.6i −50.8 + 32.9i 8.9 − 1.1i

69 + 116.6i −0.4 −0.3 0
−50.8− 32.9i −0.3 0 0
8.9 + 1.1i 0 0 0

 .

A matrix with maximal almost-zero-submatrix in M being exactly-zero is
−3.7 69 − 116.6i −50.8 + 32.9i 8.9 − 1.1i

69 + 116.6i 0 0 0
−50.8− 32.9i 0 0 0
8.9 + 1.1i 0 0 0

 .

Therefore we have ` = 0, k = 3 and we arrive at the approximate center of symmetry

p
.
= (2.035, 0.972). (29)

Finally projecting C to all curves with the symmetry of m-gon with the center p, where
m ∈ {2, 3}, we obtain the best solution for m = 3, see Fig. 1. The deviation angle (27) is
approximately equal to 0.39.

Example: We demonstrate the presented approach on further two curves of degrees four and
seven, respectively. See Fig. 1, bottom. In those cases we arrive at curves with symmetries of
square and pentagon, respectively. The deviation between the given non-symmetric curves and
the computed symmetric ones are 0.751 and 0.273, respectively.

5 Conclusion

In this paper, we studied and designed a certain modification of the recently presented method
for an approximate reconstruction of a planar algebraic curves with inexact coefficients, being
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a perturbation of some unknown (originally) symmetric planar algebraic curve. We focused
solely on the initial step of the algorithm from [7] which is devoted to computing a suitable
approximate centre of symmetry and a particular regular m-gon to whose group of symmetries
the group of symmetries of the curve is isomorphic. This modified method suitably uses, as
the algorithm for the exact case, cf. [6], the sequence of Laplacians, which is an operator
reducing the degree of the input polynomial and preserving symmetries. The functionality of
the designed approach was illustrated on several examples. The readers interested in this topic
are kindly referred to [6, 7] where they can find more details.
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Sierpinski’s curve: a (beautiful) paradigm of recursion 
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Abstrakt 

Článok nadväzuje na pôvodné práce 

Waclawa Sierpinskeho z roku 1915, kedy 

predstavil rekurzívnu štruktúru, ktorá nesie 

jeho meno, Sierpinského trojuholník. Jeho 

pôvodným zámerom bolo nájsť príklad 

novej množiny, krivky vytvorenej na základe 

známej geometrie trojuholníkov. Tento 

trojuholník, ktorý obsahuje gemetrickú 

rekurziu, bol presne definovaný v roku 1915, 

ale objavil sa už aj pred Sierpinským, a je 

doteraz referenčným bodom pre vedcov. 

Kľúčové slová: Sierpinského trojuholník, 

rekurzia, Cantorova krivka, Jordanova krivka 

  Abstract 

This paper focuses on the original articles 

written by Waclaw Sierpinski in 1915, when 

he introduced the recursive structure that 

bears his name, the Sierpinski’s triangle. His 

first aim was to exhibit the example of a new 

set, a curve traced starting from the geometry 

of the well-known triangle. The triangle, 

which embodies geometric recursion, was 

rigorously defined in 1915, but appeared also 

before Sierpinski, and is still a reference 

point for scientists. 

Keywords: Sierpinski’s triangle, recursion 

Cantorian curve, Jordanian curve 

1 New definitions for new mathematical objects 

At the end of Nineteenth century, the community of mathematicians gave birth to many 

contributions in the theory of sets and structure of numbers: new objects were defined, such the 

concepts of accumulation point and limit of a sequence of numbers. The Real numbers, their 

definition and structure as we know and use them today, is mainly due to the work developed 

during those years by Richard Dedekind (1831-1916) and Georg Cantor (1845–1918). Waclaw 

Sierpinski (1882-1969) begun his mathematical studies in the theory of numbers, and turned to 

set theory after becoming acquainted with Cantor theories. Sierpinski in 1909 started teaching 

the first course on set theory, which gained year after year a greater importance; he gave many 

important contributions to the growth of this discipline and to its sistematization. He was one 

of the founders of the Polish mathematical school which put roots in those new theories and 

carried them on [3, 7, 20 tome 1].  

 

This paper focuses on the original articles written by Sierpinski in 1915, when he introduced 

the recursive structure that bears his name, the Sierpinski’s triangle. His aim was to exhibit the 

example of a curve with such surprising and counterintuitive properties, to give rise to the need 

to rethink the definition of curve.  

 

This article is organized as follows: this first section is devoted to describe which were the 

available definition of curve at the beginning of Twentieth century. Section 2 focuses on the 

Sierpinski’s curve itself, and its mathematical properties. Section 3 describes some examples 

of the use of the Sierpinski’s triangle in art and science. 
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At the beginning of Twentieth century, there were two available definitions of a plane curve: 

the Cantorian and the Jordanian one. A Cantorian curve is a planar continuum (a set contained 

in the plane, closed, connected, containing more than one point) which has empty interior (each 

point belonging to the set is a frontier point). A Jordanian curve is the image of a segment of 

straight line via a continuous function, not necessarily biunivocal [12, pg. 90]. Cantorian and 

Jordanian curves are topologically invariant [18], i.e., they are transformed in Cantorian curves 

and Jordanian curves respectively by a continuous function, with continuous inverse.  

 

As we know, there is no definition of a curve which conforms to intuition without being 

too vast or too narrow. The difficulty already arises for plane curves and even more so 

in the three-dimensional space where we are not at, even until now, drawing a limit 

between the notion of line and that of surface [19]. 

 

In the articles dating 1915-16 [18,19] the author points out the urgency of giving a definition 

of curve which could match with intuition and would also remain sound. For this purpose he 

deliberately attacked these two definitions, to foster the scientific community to rethink and 

improve them. 

 

The existence of curves filling the square shows that the definition by Jordan is too wide, 

because it embraces geometric figures which our intuition refuses to call line. But 

Cantor’s definition is itself too wide. […] There exist indeed Cantorian curves in which 

no couple of points can be connected by a simple arc [19]. 

 

Sierpinski refers firstly to the Peano’s curve which is Jordanian, and not Cantorian for the 

reason it fills the unit square. The second example he refers to, is the set (“the topological sine”) 

A = A1  A2 where  

 

A1 = {(0, y): y  [-1, 1]},    A2 = {(x, y): y = sin 1/x : x (0, 1/]}. 

 

This set is closed, and connected, but non path connected: the points of A1 cannot be connected 

with points of A2 by a simple arc, which is the continuous image of a segment of line [13]. It is 

Cantorian, but not Jordanian. The optimal definition of curve could be to include both 

characterizations, “But even then, we come up against some very striking surprises” [19]. 

2 Sierpinski’s curve 

The aim of the paper “Sur une courbe dont tout point est un point de ramification” was to show 

a (paradoxical) example of a curve, Cantorian and Jordanian at the same time, having all points 

as ramification points. Sierpinski defines a ramification point of a continuum C to be a point 

p  C such that there exist three subsets (all continua) of C having in common, two by two, 

only p. We point out that this definition led to that of order of ramification of a point (given by 

P. Urysohn and K. Menger a few years after Sierpinski’s papers [14]). Roughly speaking, the 

order of a point p in X is the number of lines meeting at p. To count this number one can take 

an arbitrary small circular neighborhood of p and count the intersections of the set X with the 

neighborhood.  
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Fig. 1.  Order of ramification of a point. Left: the end point B has order one. Center: point p has 

order two. Right, the point p has order three. Pictures by the author. 

Sierpinski, then, constructed this paradoxical curve, starting from the triangle which bears his 

name. Take an equilateral triangle (which side has, for example, length 1), join the middle 

points of the three edges, obtaining 4 equilateral triangles (for other and more details: [4, 6,  and 

19]). The interior of the central triangle, the one not containing either of the three vertices A, B 

or C, is erased. In Fig. 2 (original drawings of Sierpinski) left, the black central triangle is the 

void; in the same figure, right, the second iteration; at each step the black triangles are the one 

representing void parts. Observe that in the vast majority of visualizations produced after 1915, 

by hand or by computer, colours are used in a complementary way: black for full areas, white 

for voids. 

 

Fig. 2.  From the original article of Sierpinski, 1915. Left, level 1 iteration, right, level 2 iteration. 

 

There are now three triangles, around a central “void”. Iterate the procedure on the remaining 

three triangles: mark the middle points of the edges, join them, obtain 4 triangles; discard the 

central one, keep the other three. At level one, since we obtain 4 triangles and discard one, we 

are left with 31 triangles; level two shows 32 triangles. At level n there will be a set of 3n 

triangles, equilateral and identical. Carrying on this procedure to the limit, as n goes to infinity, 

the intersection of all the sets obtained at each iteration, that is S  = n Sn  yields to the definition 

of Sierpinski’s triangle (all the points not belonging to the discarded voids, at each step). The 

set S is closed, connected, contains at least one point, so it is a continuum, and has empty 

interior, so it matches with the definition of Cantorian curve [19]. A property clearly showed 

by this geometric construction is the self-similarity of S: it contains copies of itself, at many 

(infinite, when going to the limit) different sizes.  
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Sierpinski’s triangle has many interesting dimension and measure properties. It has a non-

integer dimension, which can be calculated as follows. The “box-counting” dimension [15,16] 

of a set T is the following limit (if it exists): 

 

Dim(T) = lim (ln (Nε)/ln (ε)),  as  ε→ 0. 

 

Where Nε is the minimum number of circles of radius ε which are necessary to cover the set T. 

In order to compute the dimension of the Sierpinski’s triangle, proceeding as in [6], one can 

choose for any level n,   = (√3)/3·2-n. At level n, the number of triangles generated by the 

recursive process are 3n, so Nε= 3n. The calculation of the limit yields 

 

dim(S) =  limn (ln (3
n
)/ln ((√3)/3·2

-n
) = ln3/ln2. 

 

Furthermore, by a straightforward calculation, it follows that the area of S is zero. 

Sierpinski built, then, an actual curve C, piecewise linear, starting by the structure given by the 

triangle S (Fig. 3). In Fig. 3, center, the line L1 = S’
0 S

’
1 S

’
2 S

’
3 contains one edge for each of the 

three triangles T1, T2, T3 appearing in Fig. 3, left. Iterating this procedure, as shown in Fig. 4, 

implies that at step n the line Ln will contain one edge of each of the 3n triangles of the level n 

iteration. 

 

Fig. 3.  The construction of the curve, first two steps. Sierpinski (1916). 

 
 

 

Fig. 4.  The construction of the curve, further steps. Lines L2, L3, L4, L5. Sierpinski (1916). 

 

The equation of the curve (a polygonal chain) can be written down explicitly by means of 

parametric equations 

 

X = n(t), Y = n(t),   with t  [0,1] 
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such that for t = 0, 1/3n, 2/3n,…,1 the curve passes by the vertexes of the n-level triangle (as in 

Fig. 3, Fig. 4) and that the functions n(t) and n(t) are linear for t  (i-1/3n, i/3n), i = 1,2,…, 3n. 

So a polygonal line remains defined for each level n. A straightforward calculation shows that 

the sequence (n(t), n(t)) converges uniformly to ((t), (t)) in the interval [0,1]. Since (n(t), 

n(t)) were continuous functions, the limit curve is continuous, which yields the Jordan 

property.  

2.1 The Sierpinski’s triangle and the curve are the same set of points 

The segments composing the polygonal line Ln at level n, for any n, belong to the side of one 

of the 3n triangles, so every point q  Ln belongs to S and, since S is closed, passing to the 

limit, each point q  R belongs to S, which yields R  S.  

To prove the opposite inclusion, we recall again that the line Ln passes for each of the 3n 

triangles, and that the set S is contained in these 3n triangles. So, for every point r  S there 

exists a sequence of points rn R such that dist (r, rn) < 1/2n. By the compactness of [0, 1] there 

exists a subsequence tnk  t* [0, 1], such that (exploiting the uniform convergence of 

(n(t), n(t)) to ((t), (t)) ) 

rnk = (nk(tnk), nk(tnk))  ((t*), (t*))  R,   as k goes to infinity 

So r  S implies r  R. 

This implies that the sets R and S coincide. This fact yields that the set S is a Jordanian curve 

and that the dimension of R and S are the same, so d(R) = ln3/ln2. 

2.2 The order of ramification 

This weird set fits perfectly with both definitions of curve. Sierpinski proved that each point, 

except for the three vertices A, B, C are ramification points. All other points have order 3. The 

idea of the proof is the following: let p be an arbitrary point, not a vertex of any of triangle in 

the construction of S, we need to construct three continua arriving at p and having only p as 

common point. 

 

The point p is contained in an infinite sequence of triangles T1…..Tn, each one contained in 

the previous ones; let A1…. An be the infinite sequence of the left vertices of those triangles 

(in the following lines, the letters A, B, C will denote, consistently with Fig. 2, respectively 

a left, up and right vertex). Joining all those A1…. An we obtain a polygonal curve, which we 

call LA. Let us define the set D to be composed by the point p and all the points of the segments 

belonging to the curve LA. It can be proved that the set D is closed, connected and infinite, so it 

is a continuum, and it is a subset of S. With the same procedure, let us define the set Q, 

consisting of the point p and a polygonal line LB, connecting all the upper vertices B1…. Bn 

of the sequence of triangles containing p, and the set G consisting of p and the polygonal line 

LC, connecting all the right vertices C1…. Cn . The three sets, D, Q, G  are continua, and one 

can prove that they intersect, two by two, only at p. So any point p which is neither one of the 

vertices of the initial triangle, nor a vertex of any n-level triangle, has ramification order 3 [18]. 
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Since Sierpinski wanted to give an example of a curve having all ramification points, in order 

to remove the exception of the three vertices of the initial triangle, he then suggests to put 

together six triangles, to obtain an hexagon: in this way each one of the three initial vertexes 

meet another vertex with the same order, and become a point having ramification order 3. 

3 The recursive structure and its manifold apparitions in science and art 

In [21] the author underlines that the reason we continue to encounter the Sierpinksi’s triangle 

is that it embodies recursion, and is one of the simplest recursive structures we know: as shown 

in previous sections, it can be easily drawn with ruler and pencil, up to a reasonable level. One 

of the most ancient apparitions of the recursive structure of Sierpinski is what is called “Pascal’s 

(1623-1662) triangle”, the triangular arrangement of the binomial coefficients; Sierpinski’s 

structure reveals if even and odd coefficients are shaded in two different colours. Drawings of 

this pattern can be found already in 13th century Chinese mathematics books ([11, 21]), well 

before Pascal.  

Another of the encounters, happened in 1883, and described in [21], regards Edouard Lucas 

(1842-1891) who created the puzzle game “The Tower of Hanoi”.  The graph of the possible 

moves of the game takes the shape of a Sierpinski’s triangle.  

 

        

Fig. 5.  Left: the graph of 3-disc Hanoi, [21]. Right: Pascal’s triangle, 

from http://mathworld.wolfram.com/SierpinskiSieve.html. 

A surprising meeting with Sierpinski’s triangle could be found on a medieval floor, in central 

Italy, made with stone mosaic by Marmorari Romani (as they are called in scholarly literature). 

Clearly, since in this case the triangle is a physical object, the recursion cannot be repeated 

infinitely many times; on the other hand, the geometric structure is clear if the scale iteration is 

at least of level 3, as shown in the isolated triangle of Fig. 6, right [6].  

A beautiful example of isolated triangles in golden leaf, showing level 3 and 4 of iteration, 

belonging to the frieze of the cloister of Saint John in Lateran in Rome been studied in [4]; the 

same isolated triangle has been the object of a collaboration with an inmate of a North American 

Jail, who planned and realized with a team of other inmates a piece of art reproducing the 

triangle; mathematics and the beauty of the ancient object were both an important stimulus for 

the realization of the project [10] . 



Sierpinski’s curve: a (beautiful) paradigm of recursion 

 

 

G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 17 – 28 23 

 

         

Fig. 6.  Left: Sierpinski’s carpets, Santa Maria in Cosmedin, Rome. 

   Right: San Clemente, Rome (late 11th century) photo Alessandra Carlini. 

 

Fig. 7.  A Sierpinski triangle drawn in the snow, by Simon Beck. 

In Fig. 7, a Sierpinski’s triangle traced in the snow, by the snow artist Simon Beck. Beck works 

using a compass and draws with the footprints he leaves with the snowshoes. Actually he walks 

along a unique, continuous line, since as can be seen in the pictures, there are areas where he 

must not leave footprints, and he does not “jump” from one area to the other; in other words, 

he “draws a line without removing the pen from the sheet”.  

  

Fig. 8.  Variations on Sierpinski’s triangles by Simon Beck. 
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During a Ted Talk he explained that he started with patterns having central simmetry, since 

they are the simplest to do with this technique. The Sierpinski’s triangle is one of his favorites, 

he has reproduced it on snow and sand, with some variations, as in Fig. 8.  

In Fig. 9, left, a Sierpinski’s triangle drawn with a plotter led by a cellular automata (brought 

to Aplimat conference in 2018) designed in order to make possible the interaction with public 

in a science and technology museum. In picture 9, right, a composition made with five 

Sierpinski’s triangles, slightly overlapping and arranged to form a penthagon. This image was 

the final project for the Math and Art course (Honors College, Ball State University). The 

authors produced a short animation showing the penthagon growing as the triangles become 

larger, with a starbust effect [1]. 

   

Fig. 9.   Left: Plotter linked to a cellular automata drawing a Sierpinski triangle [9]. 

 Right:  composition made with five Sierpinski’s triangles [1]. 

Picture in Fig. 10 shows an arrangement of rings [8], which leads to the shape of Sierpinski’s 

Triangle; the iterations in Fig. 10 are from 1 to 4 and 9-10. The number of rings at step n can 

be computed by the formula (3n+1-3)/2. In the interations 9 and 10 the thikness of the circles has 

been reduced to one fifth in order to make the picture clearer. 

 

Fig. 10.  An arrangement of rings bringing to the Sierpinski’s triangle [8]. 
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In Fig. 11 we observe the first three steps of an iterated function system [5]: at step 1 the unit 

circle is mapped into the four smaller circles (Fig.11, left); step 2 repeats the procedure for each 

of the four circles, and so on. The limit set is a Sierpinski’s triangle (except for the small central 

smaller circle).  

 

Fig. 11.  The first three steps of the iterated function system in [5]. 

Then the author composes these transformations with a transformation of the kind 

U(z) = (uz + v)/(⎯vz ⎯ u) where |u| ⎯ |v| = 1 (i.e., a subgroup of the group of Möbius 

transformations, mapping the unit circle onto itself, and its interior, onto itself). By changing 

the parameters u and v, the points of the circle can be rotated and the circle deformed, before 

applying the previous iterated function system. This allows to obtain different limit images 

(Fig. 12). The image shown in Fig. 13 is entitled “Sierpinski Triangle Eroding” and was 

exhibited during the Art Exhibit at the Joint Mathematics Meetings (of the AMS) in January 

2008 in San Diego, USA; it was made overlapping a sequence of images. 
 

 

Fig. 12.  Limit figures corresponding to different values of parameters. 
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Fig. 13.  “Sierpinski Triangle Eroding”, part of the Art Exhibit at the Joint Mathematics Meetings 
(2008) obtained overlapping many images [5]. 

In [17] the author shows the presence of a first iteration Sierpinski’s triangle in Klimt’s painting 

“Beethoven Frieze” and a second iteration triangle on a Neolithic vessel. 

In Section 2 we described the top-down construction of Sierpinski’s triangle, which consists in 

inserting voids in a “full” object.  The same set can be obtained with a down-top procedure, 

following the “chaos game” [2, 21]: let A, B, C be three points in the plane; the starting point is 

any point P inside the triangle ABC. Choose randomly one of the three vertices, move P towards 

the chosen vertex, for half of the distance and mark the point. Repeat this procedure, each time 

choosing randomly the vertex, which gives the direction towards which the point will move, 

and mark the arriving point, at each step. All these points accumulate on a Sierpinski triangle, 

as shown in Fig. 14. This shows that the Sierpinski’s triangle is an “attractor” for the dynamics 

of chaos game. In other words, the points found step by step with the chaos game, self-assemble 

on the pattern of the Sierpinski’s triangle.  

 

Fig. 14.  Accumulating points of the down-top procedure, obtained by the Chaos Game [21]. 
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5 Conclusions 

We reported about the original articles dating 1915-16 where Waclaw Sierpinski introduced the 

triangle that today bears his name. The motivations that led him to think of this new 

mathematical object lay in the need to rethink the definition of curve. After many years the 

Sierpinski’s triangle inspires artistic creations and still gathers the interest of the scientific 

community. 
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Moving ellipses on quadrics 
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Abstrakt 

Ku každej regulárnej kvadrike 3-rozmerného 

euklidovského priestoru existuje troj-

parametrická množina rezových rovín, avšak 

rozmery každej rezovej elipsy a hyperboly 

závisia iba od jej dvoch polosí. Preto na 

každej kvadrike existuje jednoparametrická 

množina kongruentných elíps aj hyperbol, 

ktoré sa môžu medzi sebou navzájom 

premiestňovať. Pre prípad elíps uvádzame 

parametrizáciu ich pohybu na elipsoidoch, 

hyperboloidoch a paraboloidoch. Pohyby 

úzko súvisia s teóriou konfokálnych kvadrík. 

Kľúčové slová: konfokálne kvadriky, 

kužeľosečky na kvadrikách 

  Abstract 

For each regular quadric in the Euclidean  

3-space, there is a three-parameter set of 

cutting planes,  but the size of an ellipse  or 

hyperbola depends only on its two semiaxes. 

Therefore, on each quadric Q there exist 

ellipses or hyperbolas with a one-parameter 

set of congruent copies, which can even be 

moved into each other. For the case of 

ellipses, we present parametrizations of 

motions on ellipsoids, hyperboloids, and 

paraboloids. These motions are closely 

related to the theory of confocal quadrics. 

Keywords:  confocal quadrics, conics on 

quadrics 

1 Introdution 

There are well-known examples of conics which can be moved on quadrics. Apart from the 

trivial case of circles on a sphere, paraboloids are surfaces of translation, even with a continuum 

of translational nets of parabolas. On quadrics of revolution, each planar section can be rotated 

while it remains on the quadric. 

 

What’s about general quadrics Q ?  There is a three-parameter family of planes which cut Q 

along a conic. However, the size of an ellipse or hyperbola depends only on its two semiaxes. 

This parameter count reveals that on each quadric Q there exist conics with a one-parameter 

family of congruent copies on Q. Below, we focus on ellipses and provide parametrizations for 

the motion of appropriate ellipses on ellipsoids, hyperboloids, and paraboloids. The motions 

prove to be in close relation to the family of quadrics being confocal with Q. 

2 Moving ellipses on a triaxial ellipsoid 

On each regular quadric Q, two conics e1 and e2 in parallel planes are homothetic (Fig. 1). This 

means in the case ellipses, that they have parallel axes and the same ratio of semiaxes ae : be. 

Moreover, their centers lie on the same diameter. This follows from the polarity with respect to 

(henceforth abbreviated as w.r.t.) Q. 

On an ellipsoid Ԑ, we obtain the biggest ellipse within a homothetic family as the intersection 

with a plane through the ellipsoid’s center O. On the other hand, there is a point P  Ԑ with 
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a tangent plane τP parallel to the cutting planes, and the axes of the homothetic conics are 

parallel to the principal curvature directions at P (Fig. 1). The conics are even homothetic to the 

Dupin indicatrix at P. This can be confirmed, e.g., by straight forward computation using 

a Taylor expansion at P. 

 
 

Fig. 1. Homothetic sections e1, e2 of the ellipsoid Ԑ in parallel planes. 

 According to the definition of the Dupin indicatrix, the ratio of the principal curvatures κ1, κ2 

at P is reciprocal to the ratio of the squared semiaxes of the ellipses on Ԑ in planes parallel to 

τP, i.e., 

1 2 1 2: : , ife ea b      . (1) 

The lines of curvature on quadrics are related to confocal quadrics. Therefore, we recall some 

relevant properties of confocal quadrics. 

2.1 Confocal central quadrics 

Let Ԑ be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter family of quadrics 

being confocal with Ԑ is given as 

2 2 2

2 2 2
( , , ; ) : 1 0 ,

x y z
F x y z k

a k b k c k
    

  
 (2) 

Where 𝑘 ∈ ℝ ∖ {−𝑎2, −𝑏2, −𝑐2 } serves as a parameter. In the case a > b > c > 0, this family 

includes 

2

2 2

2 2

triaxial ellipsoids,

for one-sheeted hyperboloids,

two-sheeted hyperboloids.

c k

b k c

a k b

   

   
   

 (3) 

Confocal quadrics intersect their common planes of symmetry along confocal conics. As limits 

for k → −c2  and k → −b2  we obtain ‘flat’ quadrics, i.e., the focal ellipse and the focal hyperbola. 

The confocal family sends through each point P = (ξ, η, ζ) outside the coordinate planes, i.e., 

with ξηζ ≠ 0, exactly one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted 

hyperboloid. The corresponding parameters k define the three elliptic coordinates of P. We 

focus on points P of the ellipsoid Ԑ with k = 0, 
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Ԑ 
2 2 2

2 2 2
: 1.
a b c

  
    (4) 

The two hyperboloids H1 and H2 through P with respective parameters k1 and k2, where 

2 2 2

2 1 0a k b k c        , (5) 

satisfy 

H i

2 2 2

2 2 2
: 1 , 1, 2 .

i i i

i
a k b k c k

  
   

  
 (6) 

For given Cartesian coordinates (ξ, η, ζ) of a point P, we obtain the elliptic coordinates, i.e., the 

parameters of the quadrics through P, by solving F (ξ, η, ζ; k) = 0 in (3) for k. This results in 

a cubic equation with three real roots. Conversely, if the tripel (0, k1, k2) of elliptic coordinates 

is given, then the Cartesian coordinates (ξ, η, ζ) of the corresponding points P ∈ Ԑ satisfy 

2 2 2
2 1 2

2 2 2 2

( )( )
,

( )( )

a a k a k

a b a c


 


 
 

2 2 2
2 1 2

2 2 2 2

( )( )
,

( )( )

b b k b k

b c b a


 


 
 (7) 

2 2 2
2 1 2

2 2 2 2

( )( )
.

( )( )

c c k c k

c a c b


 


 
 

There exist 8 such points, symmetric w.r.t. the coordinate planes. 

 

Fig. 2. Ellipsoid Ԑ with lines of curvature (blue), curves of constant ratio of principal 

 curvatures κ1 : κ2 (red), principal curvature directions v1, v2 at the point P,  

 and one umbilic point U with κ1 = κ2. 
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At each point P of the ellipsoid Ԑ, the surface normal nP  to  Ԑ  has the direction vector 

2 2 2
, , .P

a b c

   
  
 

n  (8) 

The surface normals of the two hyperboloids H1 und H2 through P are in direction of the 

vectors 

2 2 2
: , , , 1, 2 .i

i i i

i
a k b k c k

   
  

   
v  (9) 

The differences of any two of the equations in (4) and (6) yield 

2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

1 2 1 2 1 2

0 , 1, 2 , and
( ) ( ) ( )

0
( )( ) ( )( ) ( )( )

i i i

i
a a k b b k c c k

a k a k b k b k c k c k

  

  

   
  

  
     

 (10) 

This is equivalent to vanishing dot products 

nP · v1 = nP · v2 = v1 · v2 = 0. 

Therefore, confocal quadrics form a triply orthogonal system of surfaces. Due to a theorem of 

Dupin, they intersect each other along lines of curvature. The vectors v1 and v2 from (9) define 

the principal curvature directions at P. 

2.2  Ellipses on ellipsoids 

Now, we look for the biggest ellipse on  Ԑ  within a homothetic family.  

Lemma 1.  The semiaxes of the ellipse in the diameter plane parallel to the tangent plane τP at 

the point P  Ԑ with elliptic coordinates (0, k1, k2) are 

2 1, .p pa k b k     (11) 

Proof.  The diameter plane is spanned by the direction vectors v1 and v2 from (9). We look for 

λ ∈ ℝ with  λvi  Ԑ , hence by (4) 

2 2 2
2

2 2 2 2 2 2 2 2 2
1.

( ) ( ) ( )i i ia k a b k b c k c

  


 
   

   

 

This condition does not change if we subtract from the term in square brackets the left-hand 

side of the first equation in (10), divided by ki. Thus, we obtain 

2 2
2

2 2 2 2 2
... 1 ,

( ) ( )i i ia k a k a k a

 


 
   

  
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and, finally, 

2 22 2 2
2

2 2 2 2 2 2
1,

( ) ( ) ( )
i

i i i i ik a k b k c k k

     
      

   
v  

hence, 
2 2Pa k  v  and 

1 1Pb k  v . These equations can already be found in 

[1, p. 517]. 

 

 

Fig. 3.  Moving the ellipse e on the ellipsoid Ԑ. The trajectories of the principal vertices  

 of e are displayed in green. 

For the motion of a given ellipse e with semiaxes (ae, be), Lemma 1 implies the necessary 

condition 

2e Pa a k   ,   where  
2b k a    (12) 

by virtue of (5). We infer, under inclusion of (1): 

Theorem 1.  If an ellipse e with semiaxes (ae, be) is moving on a triaxial ellipsoid Ԑ, then both 

points P  Ԑ  with tangent planes τP parallel to the plane of e move on curves with proportional 

elliptic coordinates 2 2

1 2: :e ek k a b   . Along these curves also the ratio of the principal 

curvatures remains constant (see Fig. 2). 

The ellipses of Ԑ in planes parallel to τP have their principal vertices in the plane spanned by the 

center O, point P, and by the principal curvature direction v2 from (9). Therefore, the principal 

vertices are located on an ellipse, for which OP and the major axis with length aP in the plane 

through O determine conjugate diameters. Let p denote the position vector of P and m = µ p 

with 0 ≤ µ = sin x < 1 that of the center M of any ellipse in e homothetic family.  
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Then, its major semiaxis ae equals aP cos x = aP 21  which results in 

2 2
2

2

2

1 1e e

P

a a

a k
     . (13) 

When during the motion of the ellipse e, the scalar µ vanishes, then its center M coincides with 

the center O of Ԑ. The corresponding point P has the elliptic coordinate 2

2 ek a  . In order to 

continue the motion, point P has to jump to its antipode (note the example in Fig. 4). 

 

Fig. 4.  Motion of the ellipse e on the ellipsoid Ԑ – displayed together 

with the trajectory of a principal vertex of e (green)  

and that of the corresponding point P  Ԑ (red)  

with the tangent plane τP parallel to e. 

In order to parametrize the motion of the ellipse e on the ellipsoid Ԑ (see Fig. 3), we set 

2

2

2

1

: e

e

ak
v

k b
   const., where 

2

2
1

a
v

c
  , (14) 

and use the parameter t = −k2 for representing the motion. Then, by virtue of (5), t is restricted 

by the interval 

2 2 2 2 2max{ , , } min{ , }eb vc a t a vb   (15) 

and k1 = t/v. From (7) follows the parametrization p(t) by replacing (k1, k2) with (t/v, t).  
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This implies for the trajectory of the center M of e 

m(t) = µ(t) p(t)  with  µ(t) = 
2

1 ea

t
 . (16) 

Now, we can express the motion of e in matrix form, in terms of position vectors xm w.r.t. the 

moving space (attached to e) and xf  w.r.t. the fixed space (attached to Ԑ), as 

xf = m(t) + M(t) xm ,   where   M(t) = 2 1

2 1

, , P

P

 
 
 

v v n

v v n
. (17) 

The three column vectors of the orthogonal matrix M(t) are given in (9) and (8). 

Note that this parametrization is valid only for points P in the octant x, y, z > 0. We get a closed 

motion after appropriate reflections in the planes of symmetry (see Figs. 3 and 4). By the same 

token, algebraic properties of this motion are reported in [2]. 

3 Moving ellipses on a one-sheeted hyperboloid 

Also on hyperboloids and paraboloids, the conics in parallel planes are homothetic. However, 

not in all cases the method, as used before for ellipsoids, can be applied since a point P either 

does not exist or lies at infinity. Moreover, paraboloids have no center O. Below, we analyse 

the motions of ellipses on a one-sheeted hyperboloid H 1 and on an elliptic paraboloid P  (see 

Section 4). The motion of an ellipse on a two-sheeted hyperboloid works similar to that of 

triaxial ellipsoids.1 

For ellipses e  H1, there is no point P  H1 with a tangent plane τP parallel to e. However, 

we find an appropriate point P  on the ‘conjugate’ two-sheeted hyperboloid H2 (Fig. 5). 

 

Fig. 5.  For ellipses e on a one-sheeted hyperboloid H1, 

 there does not exist a point P ∈ H1  

 with a tangent plane τP parallel to the plane of e. 

                                                 
1 The motion of a parabola on a hyperboloid is discussed in [4, p. 355–357]. 
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The hyperboloid H2 shares the asymptotic cone with H1, and therefore, the axes of the ellipse 

e are parallel to the principal curvature directions of H2 at P . The two hyperboloids satisfy the 

respective equations  

H1 

2 2 2

2 2 2
: 1

x y z

a b c
      and    H2 

2 2 2

2 2 2
: 1

x y z

a b c
     

with a > b. The quadrics confocal with H2 are given by 

2 2 2

2 2 2
1

x y z

a k b k c k
   

  
. 

Again, this family sends through each point P  outside of the planes of symmetry three mutually 

orthogonal quadrics, one of each type. On the two-sheeted hyperboloid H2 with k = 0, we use 

the parameters k0 of the ellipsoid and k1 of the one-sheeted hyperboloid as the elliptic 

coordinates of P  with 

2 2

1 0b k a k   . 

Then, similar to Lemma 1, the ellipse e  H1 in the diameter plane parallel to 
P
  has the 

semiaxes 

0P
a k    and   

1P
b k . 

This is the smallest ellipse on H1 within the homothetic family. 

If any ellipse with given semiaxes ae and be is to be moved on H1, then the corresponding point  

P   H2 has to trace a curve with proportional elliptic coordinates 

2 2 2 2

0 1: : :e eP P
k k a b a b  . 

Similar to (7), we can parametrize the trajectory ( ) ( , , )t   p  of P by  t := k0 > a2, where 

2

0

2

1

: e

e

k a
v

k b
   const., 

hence k1 = t/v with b2 < k1 < a2. 

Now we have to find the center M of the moving ellipse on the diameter line ,P O 
 

: For each 

P , the principal vertices of the ellipses in planes parallel to 
P
  are placed on a hyperbola, for 

which the point P  and one principal vertex in the plane through O are the endpoints of 

conjugate diameters. If ae = 
P

a cosh x, then the position vector m of the center M of e and p  

of the point P  are related by m = sinh xp . Thus, we obtain 

m p     with    
2

2

2
1e

P

a

a
   . (18) 
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Fig. 6.  Movement of the ellipse e on the one-sheeted hyperboloid H1. 

 The two principal vertices of e trace the same curve (green). 

This yields, similar to (17), a parametrization for the motion of the ellipse e on H1 (Fig. 6). 

As a consequence of (18), on the trajectory of  P  only points with 2 2

0 eP
a k a   are admitted. 

Therefore, the parameter t = k0 runs the interval  

2 2 2 2max{ , } min{ , }ea vb t a va  . 

In the case 2 2

ea va , the same phenomenon appears as mentioned above. When the parameter 

t reaches 2

ea , then, for continuing the motion of the ellipse, the point P  either has to jump to 

its antipode, or the scalar µ in (18) must get a negative sign. 

4 Moving ellipses on an elliptic paraboloid 

The quadrics being confocal with an elliptic paraboloid can be represented as 

2 2

2 2
2 0

x y
z k

a k b k
   

 
  for 𝑘 ∈ ℝ ∖ {−𝑎2, −𝑏2} .  (19) 
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In the case a > b > 0, this one-parameter family contains 

2

2 2

2

elliptic paraboloids,

for hyperboloc paraboloids,

elliptic paraboloids.

b k

a k b

k a

   

   
  

 (20) 

For each k, the vertex of the corresponding paraboloid has the coordinates (0, 0,−k/2). The point 

(0, 0, b2/2) is the common focal point of the principal sections in the plane x = 0,  and   

(0, 0, a2/2) is the analogue for the sections with y = 0. The limits for k → −b2  or  k → −a2 define 

the two focal parabolas (note [4, Fig. 7.5,]). 

The family of confocal parabolas sends through each point P outside the planes of symmetry  

x = 0  and  y = 0 three surfaces, one of each type. Like before in the case of confocal central 

surfaces, we call the parameters of the three parabolas through P the elliptic coordinates of P. 

We focus on the elliptic paraboloid P0  with  k = 0. Its points have the elliptic coordinates  

(0, k1, k2), where 

2 2

2 1k a k b     . 

Conversely, if any point P  P0 is defined by the elliptic coordinates (k1, k2), then its Cartesian 

coordinates  ξ, η, ζ satisfy 

2 2 2
2 1 2

2 2

( )( )
,

( )

a a k a k

a b


 



 

2 2 2
2 1 2

2 2

( )( )
,

( )

b b k b k

a b


 



 (21) 

2 2

1 2 .
2

a b k k


  
  

The normal vectors nP of P0 and vi of the paraboloid Pi with parameter ki, i = 1, 2, at the point 

P are (note Fig. 7) 

22

2 2
,

1 1

i

P i

i

a ka

b b k



 

  
   
  
       
  
  

      

n v  . (22) 

Also confocal paraboloids form a triply orthogonal system of surfaces, and consequently, they 

intersect each other along lines of curvature. The vectors v1 and v2 in (22) define the principal 

curvature directions at P. 

 



Moving ellipses on quadrics 

 

 

G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 29 – 42 39 

 

 

Fig. 7.  Elliptic paraboloid P0 with lines of curvature (blue), curves of constant                                         

ratio of   principal curvatures κ1 : κ2 (red), and direction vectors v1, v2  

of the principal curvature tangents at the point P  P0. 

Also confocal paraboloids form a triply orthogonal system of surfaces, and consequently, they 

intersect each other along lines of curvature. The vectors v1 and v2 in (22) define the principal 

curvature directions at P. 

Lemma 2.  Given a regular quadric Q0, let P  Q0 be a point in general position with the tangent 

plane τP to Q0. If Q1 and Q2 are the remaining two confocal quadrics through P, the pole of τP 

w.r.t. Q2 is the center of curvature of the orthogonal section of Q0 at P through the principal 

curvature tangent tP orthogonal to Q2. 

Proof.  We can verify this by straight forward computation: Based on the parametrizations of 

Q0 by elliptic coordinates (k1, k2), as given in (7) for central quadrics and in (21) for paraboloids, 

we compute the first and second fundamental form and the center of curvature (= Meusnier 

point) for the orthogonal section of Q0 through tP (see, e.g., [3]). 

A synthetic proof runs as follows: Let c be the line of intersection between the confocal quadrics 

Q0 and Q1. Then, c is a line of curvature for both. The developable T which contacts Q0 along 

c has generators orthogonal to c. Also the surface normals to Q0 along c form a developable N. 

Its cuspidal points are the centers of curvature of the orthogonal sections of Q0 through the 

tangents to c (note [4, p. 418ff]). 

At the point P  c, the tangent tP to c, the surface normal nP to Q0, and the generator gP of T 

are mutually orthogonal. Any two of them define the principal curvature directions at P for one 

of the three confocal quadrics. For example, the lines gP and nP are conjugate tangents of Q2, 

and therefore, even polar w.r.t. Q2. 
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The polarity w.r.t. Q2 transforms the developable T  through gP into a developable T′ through 

nP, while tangent planes X of T and Q0 at points X  c are sent to points X´ of the cuspidal edge 

cT′  of T′. The poles of each plane w.r.t. the quadrics of a confocal family lie on a line orthogonal 

to the given plane (see, e.g., [4, p. 292]). Therefore, the Q2-pole X′ of X lies on the normal nX 

of Q0 at X. Consequently, the cuspidal edge cT′  of T′ is a curve on the developable N. The 

polarity w.r.t. Q2 takes the generator gX  T to the tangent g´X  to cT′  at X´, which is also 

a tangent of N. 

Now we prove, that the cuspidal edge cT′ of  T′ passes through the cuspidal point CN of  

nP  N : 

The tangent plane P to T at P is the limit X → P of a plane connecting the generator gP with 

any point of gX. By virtue of the polarity w.r.t. Q2 with T →T′, the cuspidal point P′  cT′ on 

nP is the limit X → P of the point of intersection between nP and any plane through g′X . As 

noted before, the tangent plane [nX, tX] along nX to N is such a plane, since it passes through 

g′X. However, the limit X → P of the point of intersection nP  [nX, tX] yields also the cuspidal 

point CN of nP w.r.t. the developable N. This means, that CN equals the pole P′ of P w.r.t. Q2. 

 

We apply Lemma 2 to the elliptic paraboloid P0. The tangent plane P to P0 at P = (ξ, η, ζ) 

has the equation 

2 2
: .P x y z
a b

 
     

Its pole w.r.t. the paraboloid Pi with parameter ki is 

2

2 2

2

2 2

1

i

i
i i

i

a k

a a

b k
C k

b b

k







 




   
   
     
            

        
     

. (23) 

This confirms that the principal curvatures of P0 at P are 

1
1/i i

i P

PC
k

  
 n

,  where  
1 2  . (24) 

Now we have to place a given ellipse e with semiaxes ae and be, where 2 2

2 1: :e ea b k k , in a 

plane parallel to P in the correct way on P0. This means, the center M of e lies on the diameter 

dP of the paraboloid P0 and the major axis is parallel to the principal curvature tangent tP in 

direction v2, i.e., orthogonal to the paraboloid P2 through P (Fig. 7). 
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The major axis lies in the plane ε spanned by tP  and dP. This plane intersects P0 along a parabola 

p. Due to Meusnier’s theorem, we obtain the center of curvature *P  of p at P as the pedal point 

of C2 from (23) in ε. Let *PP   denote the radius of curvature at P (Fig. 8). Then the chord 

S1S2 of p parallel to tP through the midpoint of *PP  has its midpoint S0 on the diameter dP and 

the length 2ρ. 

 

Fig. 8.  For a given parabola p with point P  p and corresponding center of curvature *P ,  

 this is a construction of the endpoints S1, S2 on a particular chord of p. 

This follows with the help of a shear, i.e., a perspective affine transformation in ε with tP as 

axis and the ideal point of tP as its center. This shear transforms p into a parabola p′ which 

osculates p at P. We can define a shear such that P becomes the vertex of p′. Then, the midpoint 

of *PP  if the focal point of p′, and for p′ the chord parallel to tP through the focal point has the 

length 2ρ. Under the inverse shear, the chord is just translated parallel to tP. 

For the parabola p, the squared length of chords parallel to tP is proportional to the distance 

between P and the midpoint of the chord. According to Fig. 8, in our case the factor of 

proportionality is known as 
2

1 2 0/S S PP . Consequently, the respective position vectors p, s0, and 

m of P, S0, and the center M of the wanted ellipse e are related by 

2

02
( )ea


  m p s p . (25) 

Now, we can parametrize the motion of a given ellipse e on P0 in the following way. By (24), 

the given semiaxes define the locus of points P  P0 with proportional elliptic coordinates 

2

2

2

1

: eak
v

k b
  ,    where   v > 1 . 

In the same way as before, we use t := −k2 as the motion parameter. Then the pair of elliptic 

coordinates k1 = t/v and k2 = t yields the trajectory p(t) of the point P  P0 by (21). For each 

admissible t, we compute the Meusnier point C2 by (23) and then its pedal point *C  in the 

plane ε, as described above. Finally, due to (25), we can find the correct position of the ellipse 

e  P0 in a plane parallel to P. 

∈ 



Hellmuth Stachel 

 

 

42 G – slovenský časopis pre geometriu a grafiku, ročník 17 (2020), číslo 33, s. 29 – 42 

 

 

Fig. 9.  Ellipse e moving on the elliptic paraboloid P0 – displayed together  

 with the trajectories of the principal vertices of e (green)  

and the related curve of constant ratio of principal curvatures (red). 

We summarize: 

Theorem 2.  On regular quadrics Q , all ellipses e other than circles can be moved, except on 

a one-sheeted hyperboloid the gorge ellipse and on a triaxial ellipsoid the ellipse with the 

longest and the shortest diameter as axes. During these motions, the points P  Q with a tangent 

plane parallel to the plane of e trace curves with a constant ratio of elliptic coordinates on Q. 
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Orthogonal axonometry: How can it be determined? 
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Abstrakt 

Axonometrické zobrazenie je vhodná forma 

dvojrozmernej reprezentácie trojrozmerných 

objektov využívaná v technickom  kreslení a 

architektúre. Cieľom je uchovať priestorový 

dojem scény bez skreslenia spôsobeného 

vzdialenosťou pozorovateľa. V tomto článku 

uvádzame nové možnosti určenia kolmej 

axonometrie, transformačné vzťahy platné 

medzi nimi a rovnice pre výpočet súradníc 

priemetu obrazu bodu v kolmej axonometrii  

na základe podmienok jej určenia. 

Kľúčové slová: premietanie, kolmá 

axonometria, rovnice zobrazenia 

  Abstract 

In technical drawing and in architecture 

axonometric projection is a form of a two-

dimensional representation of three- 

dimensional objects. The goal is to preserve 

a spatial impression without distortion due to 

the distance from an observer. In this paper 

we give new possibilities to determine an 

orthogonal axonometry, transformation 

relations between them, and image equations 

of a point in orthogonal axonometry based 

on these options of determination. 

Keywords:  projection, orthogonal 

axometry, image equation 

1 Introduction 

There are well-known examples of conics which can be moved on quadrics. Apart from the 

trivial case of circles on a sphere, paraboloids are surfaces of translation, even with a continuum 

of translational nets of parabolas. On quadrics of revolution, each planar section can be rotated 

while it remains on the quadric. Technical drawings need to be precise, accurate and 

unambiguous, so engineers and technicians use orthogonal projections (Monge projection, 

Method of contouring, etc.). On the other hand, for most people it is hard to imagine an object 

from e.g. Monge mapping. Drawings in linear perspective give a feeling of reality, but there is 

a problem in change of size of objects depending on the distance from the observer [1]. The 

compromise is an axonometry with its fixed relation between sizes of objects in space and those 

on projected space and its good visualization. 

 

Axonometry originated in China. Some concepts of axonometry (especially isometry) had 

existed in a rough empirical form for centuries well before William Farish (1759–1837), 

professor at Cambridge University, who was the first to provide detailed rules for isometric 

drawing. Farish published his ideas in 1822 in paper "On Isometrical Perspective", in which he 

recognized "need for accurate technical working drawings free of optical distortion” [2]. Since 

then axonometry became an important graphic technique for artists, architects, and engineers. 

It usually comes as a standard feature of CAD systems and other visual computing tools. 

2 Principle of axonometry 

Axonometry is a graphical procedure belonging to descriptive geometry that generates a planar 

image of a three-dimensional object. The term "axonometry" means "to measure along axes", 

http://www.wikiwand.com/en/Descriptive_geometry
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and indicates that the dimensions and scaling of the coordinate axes play a crucial role. 

Axonometry is a parallel projection of a space onto one plane, into which we also project base 

elements of the coordinate system attached to the object.  

 

Let the Cartesian coordinate system with the origin 𝑂, axes 𝑥, 𝑦, 𝑧 and planes 𝜋 = (𝑥, 𝑦), 
𝜈 = (𝑥, 𝑧), 𝜇 = (𝑦, 𝑧) be given in the Euclidean space. Axonometric image plane 𝜌 will be 

determined as a plane that is not parallel to any axis and let direction 𝑠 be not parallel to the 

plane 𝜌. Let the positive semi axes intersect image plane 𝜌 at the points 𝑋, 𝑌 and  𝑍. Image of 

the origin 𝑂 in parallel projection onto the plane 𝜌 in direction 𝑠 will be denoted 𝑂𝑎, images of 

the coordinate axes 𝑥, 𝑦, 𝑧 by 𝑥𝑎 , 𝑦𝑎, 𝑧𝑎 (Fig. 1). 

 

 

Fig. 1.  Axonometric projection 
 

Three points 𝑋, 𝑌, 𝑍 form the axonometric triangle and lines 𝑥𝑎 , 𝑦𝑎, 𝑧𝑎 form the axonometric 

axial cross. The drawing plane can be identical to the plane 𝜌, or a plane parallel to the plane 

𝜌. By shifting of the drawing plane in the projection direction 𝑠, one changes only the size of 

the axonometric triangle 𝑋𝑌𝑍, but the projection of the axonometric axial cross does not 

change. The coordinate axis 𝑧𝑎 is usually drawn vertically. All axonometric triangles are 

homothetic with the centre at point 𝑂𝑎 and they determine the same axonometry. Let the images 

of a measurement unit on axes 𝑥, 𝑦, 𝑧 are denoted by 𝑝, 𝑞, 𝑟. The question is, whether one can 

situate them in the drawing plane arbitrarily. The answer is given by Pohlke´s theorem: The 

three line segments with a common beginning point and not contained in a line, can be 

considered as a parallel projection of the three adjacent edges of a cube, see for instance [3]. 

Following formula is valid for the values 𝑝, 𝑞, 𝑟 denoted as coefficients of change 

 

𝑝2 + 𝑞2 + 𝑟2 = 2 + cotg2 𝜃,      (1) 

 

where 𝜃 is the angle between the projection direction and the image plane. Proof of this famous 

theorem may be found for example in [3]. If the direction of projection is perpendicular to the 

image plane, axonometry is said to be normal or orthogonal (English literature usually refers to 

it as “axonometric projection”) [4]; otherwise it is said to be skew. 
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3 Orthogonal axonometry 
 

We worked on these theorems about orthogonal axonometry: 

 Axonometric triangle 𝑋𝑌𝑍 is an acute-angled triangle.  

 The axes 𝑥𝑎 ,  𝑦𝑎,  𝑧𝑎 are altitudes in the triangle 𝑋𝑌𝑍 and the point 𝑂𝑎 is its orthocenter.  

 𝑝, 𝑞, 𝑟 ∈ (0,1). 

 𝑝2 + 𝑞2 + 𝑟2 = 2.         (2) 

 

Proofs can be found e.g. in [5]. 

 

An orthogonal axonometry is graphically given in a drawing plane by any of the following: 

a) axonometric triangle, 

b) axonometric axial cross. 

 

Our objective was to analyse various options of determining an orthogonal axonometry, to 

establish transformation relations between them, and to compute planar coordinates of 

axonometric image of an arbitrary point. 

 

Let the Cartesian coordinate base (𝑂´, 𝑥´, 𝑦´) with the origin 𝑂´ = 𝑂𝑎 and 𝑦´ = 𝑧𝑎 be given in 

the image plane. Orthogonal axonometry may be determined by: 

a) values of angles 𝜶, 𝜷 (Fig. 2); 𝛼 = π − ∢(𝑥𝑎, 𝑥´),  𝛽 = ∢(𝑦𝑎, 𝑥´), 𝛼 ∈ (0, π 2⁄ ),  
𝛽 ∈ (0, π 2⁄ ), and 𝛼 + 𝛽 < π 2⁄ . Intervals for values of angles follow from Pohlke´s 

theorem and the property that the axonometric triangle 𝑋𝑌𝑍 is acute-angled, the proof 

can found in [6]. This option of definition is the same as an orthogonal axonometry 

given graphically by an axonometric axial cross, e.g. ∢(𝑥𝑎, 𝑦𝑎), ∢(𝑧𝑎, 𝑦𝑎).  

 

 

 

Fig. 2.  Axonometric triangle and axes                  Fig. 3.  Angles 𝜑 and 𝜓 

 

b) values of 𝒑, 𝒒, 𝒓; 𝑝, 𝑞, 𝑟 ∈ (0,1) while only two of them are required, as the third one 

can be calculated from formula 𝑝2 + 𝑞2 + 𝑟2 = 2. 
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c) lengths of sides of axonometric triangle, whereby only the ratio of them 

|𝑋𝑌|: |𝑌𝑍|: |𝑍𝑋| is necessary, because parallel image planes intersect axes 𝑥, 𝑦, 𝑧 in 

homothetic axonometric triangles. 

d) values of angles 𝝋, 𝝍 (Fig. 3); the angles represent the second and the third spherical 

coordinate of the point 𝑂𝑎 in space (the first spherical coordinate - the length of the line 

segment 𝑂𝑂𝑎 does not play any role, because parallel image planes intersect axes 𝑥, 𝑦, 𝑧 

in homothetic axonometric triangles). In general, the angle 𝜑 ∈ ⟨0, 2π), without loss of 

generality we can assume the front view, 𝜑 ∈ (0, π 2⁄ ), and the view from top,  
𝜓 ∈ (0, π 2⁄ ), since the goal of projection is a good visualization. Other options have 

similar calculations. 

 

It is understood that length of 𝑝, 𝑞, 𝑟 may be graphically determined by the rotation of the 

coordinate plane 𝜋 = (𝑥, 𝑦) to the image plane 𝜌 around the line 𝑋𝑌 (Fig. 2), 𝑂𝑜 is the rotated 

position of the origin 𝑂, 𝑂𝑜𝑋 and 𝑂𝑜𝑌 are perpendicular, and the values of 𝑝, 𝑞 can be calculated 

as ratios of the projected and rotated images 

 

0 0

, .
a aO X O Y

p q
O X O Y

   (3) 

 

Analogously, the length of 𝑟 is determined by the rotation of the plane defined by points 𝑂, 𝑃, 𝑍 

to the image plane 𝜌 around the axis 𝑧𝑎 (Fig. 2). The line 𝑃𝑂𝑜´ is perpendicular to the line 𝑂𝑜´𝑍 

and 
 

0

.
´

aO Z
r

O Z
  (4) 

 

The constructions mentioned above are described in detail in [7]. 

The angles 𝛼, 𝛽, 𝜑, 𝜓 are denoted in Fig. 2, being 

 

𝜑 = ∢𝑋𝑂𝑜𝑃, 𝜓 = ∢𝑃𝑂𝑜´𝑂𝑎.  

 

To deduce relations between defining options one must consider the following statements: 

0

sin
XP

XO
   in the triangle 𝑋𝑂𝑜𝑃, cos

a

XP

XO
   in the triangle 𝑋𝑂𝑎𝑃, 

0

cos
YP

YO
   in the 

triangle 𝑌𝑂𝑜𝑃 and cos
a

YP

YO
   in the triangle 𝑌𝑂𝑎𝑃  give the equations 

 

sin 𝜑 = 𝑝 cos 𝛼 ,   (5) 
 

cos 𝜑 = 𝑞 cos 𝛽 .   (6) 

 

Since 
0

cos
´

aO Z

O Z
   in the triangle 𝑂𝑎𝑂𝑜´𝑍, one may express 

 

cos 𝜓 = 𝑟.     (7) 
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The length of the line segment 𝑂𝑃 can be expressed by the lengths of line segments  

 

0 0´ .O P O P  (8) 

 

Values of the inner angles in the axonometric triangle 𝑋𝑌𝑍 are  π 2⁄ − 𝛽, π 2⁄ − 𝛼, 𝛼 + 𝛽.   

 

The following theorems and formulas are considered in order to deduce transformation 

relations: 

 Goniometric functions in a right-angled triangle;  

 Euclid´s theorems about the altitude and the leg in a right-angled triangle; 

 Sine formula and cosine formula for a triangle; 

 Formulas for calculation of an area of a triangle. 

 

We deduced each of the twelve transformation relations with the aid of previous statements. To 

determine angles 𝛼, 𝛽, 𝜑, 𝜓, only one goniometric function is needed because all of them are in 

the interval (0, π 2⁄ ). 

4 Transformation relations 

a) Knowing the angles 𝛼, 𝛽 the values 𝑝, 𝑞, 𝑟 are sought. 

Considering |𝑋𝑂𝑜|2 = |𝑋𝑌| ∙ |𝑋𝑃|, |𝑌𝑂𝑜|2 = |𝑋𝑌| ∙ |𝑌𝑃|, |𝑃𝑂𝑜|2 = |𝑋𝑃| ∙ |𝑌𝑃| in the 

triangle 𝑋𝑌𝑂𝑜, cos
a

XP

XO
   in the triangle 𝑋𝑃𝑂𝑎, sin

XN

XY
   in the triangle 𝑋𝑌𝑁 

and  sin
a

XN

XO
    in the triangle 𝑋𝑂𝑎𝑁, we calculate 

 

 

2 2

2

2

0

1 sin sin

cos cos cos sin

a a a aXO XO XO XO
p

XY XP XY XNXO

 

    
      

 
. (9) 

 

Similarly considering the triangles 𝑌𝑃𝑂, 𝑋𝑌𝑀, 𝑌𝑂𝑎𝑀 we deduce 

 

 
2 sin

cos sin
q



  


 
. (10) 

 

Using Eq. (6), (8) and relations in the triangles 𝑃𝑂0´𝑂𝑎, 𝑋𝑃𝑂𝑎, 𝑌𝑃𝑂𝑎 we calculate 

 
2

2 2 2

2

0

2

2

0

cos 1 sin 1
´

1 1 1 tg tg .

a

a a a

PO
r

PO

PO PO PO

XP YPPO

 

 

     

      

 (11) 

 

The value 𝑟 can be also obtained from (2). 
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b) Knowing the angles 𝛼, 𝛽 the ratios of sides of axonometric triangle |𝑋𝑌|: |𝑌𝑍|: |𝑍𝑋| are 

sought by using sine formula for the inner angles of the axonometric triangle  

 

|𝑋𝑌|: |𝑌𝑍|: |𝑍𝑋| = sin(𝛼 + 𝛽) : sin (
π

2
− 𝛽) : sin (

π

2
− 𝛼) = 

= sin(𝛼 + 𝛽) : cos 𝛽 : cos 𝛼 .   (12) 

 

c) Knowing the angles 𝛼, 𝛽 the angles 𝜑, 𝜓 are sought. 

 

d)  

2

02

2 2

cotg
tg .

cotg

a

a

XP

PO XP YP O P

YPPY PY

O P





     (13) 

 

Considering equation (11) sin 𝜓 is found 

 
2 2sin 1 cos tg tg .        (14) 

 

e) Knowing the values 𝑝, 𝑞, 𝑟 the angles 𝛼, 𝛽 are sought. 

Firstly by aid of relations in the triangles 𝑂𝑎𝑃𝑋, 𝑋𝑂𝑜𝑃, 𝑂𝑎𝑃𝑌, 𝑌𝑂𝑜𝑃 we calculate 

 

𝑝 sin 𝛼 = sin 𝜓 ∙ cos 𝜑 ,    (15) 
 

𝑞 sin 𝛽 = sin 𝜓 ∙ sin 𝜑 .   (16) 

 

Applying (15), (7) and (5) we obtain 

 

  2 2

2

2 2

1 1
sin .

p r

p r


 
  (17) 

 

Likewise applying (16), (4) and (6) we find 

 

  2 2

2

2 2

1 1
sin .

q r

q r


 
  (18) 

 

f) Knowing the values 𝑝, 𝑞, 𝑟 the ratios of sides of axonometric triangle |𝑋𝑌|: |𝑌𝑍|: |𝑍𝑋| 
are sought. Substituting (17) and (18) into (12) ratios can be expressed as 

 
2 22 1 11

: : : : ,
p qr

XY YZ ZX
pq rq rp

 
   (19) 

 

2 2 2: : 1 : 1 : 1 .XY YZ ZX r r p p q q      (20) 
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g) Knowing the values 𝑝, 𝑞, 𝑟 the angles 𝜑, 𝜓 are sought. 

Applying (6) and (18) we have 

 
21

cos
p

r



 ,  respectively  

21
sin

q

r



 . (21) 

 

Referring to (7), it holds  cos 𝜓 = 𝑟. 

 

h) Knowing the sides of the axonometric triangle |𝑋𝑌|, |𝑌𝑍|, |𝑍𝑋| or their ratio, angles 𝛼, 𝛽 

are sought. There are more possibilities to find them. The first one uses cosine formula 

for the inner angles in the axonometric triangle 

 
2 2 2

π
sin cos ,

2 2

ZX XY ZY

XY ZX
 

  
   

 
  (22) 

 
2 2 2

π
sin cos .

2 2

ZY XY ZX

XY ZY
 

  
   

 
  (23) 

 

Other possibility is to apply Heron´s formula for the area 𝑆 of the triangle 𝑋𝑌𝑍 

 

π 2
cos sin ,

2

S

XY ZX
 

 
   

 
 (24) 

 

π 2
cos sin .

2

S

XY ZY
 

 
   

 
 (25) 

 

i) Knowing the sides of axonometric triangle |𝑋𝑌|, |𝑌𝑍|, |𝑍𝑋| or their ratio, 𝑝, 𝑞, 𝑟 are 

sought. Applying equations (9), (24), (25) we get 

 
2 2 2 2

2

2

4
,

4

YZ XY ZX S
p

S


  (26) 

 

2 2 2 2

2

2

4
.

4

ZX XY YZ S
q

S


  (27) 

 

The value 𝑟 is obtained from (2). 

 

j) Knowing the sides of axonometric triangle |𝑋𝑌|, |𝑌𝑍|, |𝑍𝑋| or their ratio, the angles 𝜑, 𝜓 

are sought. Applying (5), (26), (7) and (14) we express 

 
2 2 2

2

2

4
sin ,

XY ZX S

XY



  (28) 
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  2 2 2 22 2

2

2

4 4
sin .

4

XY YZ S XY ZX S

S


 
  (29) 

 

k) Knowing the angles 𝜑, 𝜓 the angles 𝛼, 𝛽 are sought. By using (5), (6), (15) and (16) we 

have 

 

tg 𝛼 = sin 𝜓 cotg 𝜑,   (30) 
 

tg 𝛽 = sin 𝜓  tg 𝜑.   (31) 

 

l) Knowing the angles 𝜑, 𝜓 the values 𝑝, 𝑞, 𝑟 are sought. By using (5), (6), (15) and (16) 

we calculate 

 

𝑝2 = 1 − cos2𝜑 cos2𝜓, (32) 
 

𝑞2 = 1 − sin2𝜑 cos2𝜓.   (33) 

 

Referring to (7),  cos 𝜓 = 𝑟 . 

 

m) Knowing the angles 𝜑, 𝜓 the ratios of sides of axonometric triangle |𝑋𝑌|: |𝑌𝑍|: |𝑍𝑋| are 

sought. Applying of (5), (6), (15), (16), (32) and (33) we express 

 

2 2 2 2

: : sin : cos : sin

sin : 1 cos cos cos : 1 sin cos sin .

XY YZ ZX p q  

      

 

    
  (34)  

 

 

Fig. 4.  Projection of the point 𝐴 

5 Image equations of a point in an orthogonal axonometry 

Image equations of a point with coordinates 𝐴[𝑥, 𝑦, 𝑧] into a plane with Cartesian base 𝑂´, 𝑥´, 𝑦´ 
in an orthogonal axonometry (Fig. 4) are [6]: 
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´ cos cos ,

´ sin sin .

x p x q y

y p x q y r z

 

 

    

      
 (35) 

 

Determining only the angles 𝛼, 𝛽 and applying (9) and (10) we express  

 

   
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sin cos sin cos
´ ,

sin sin

sin sin sin sin
´ 1 tg tg .

cos sin cos sin

x x y

y x y z

   

   

   
 

     
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 

        (36) 

 

Determining the angles 𝜑, 𝜓 and applying (15), (16) the image equations are 

 

´ sin cos ,

´ sin cos sin sin cos .

x x y

y x y z

 

    

    

      
 (37) 

 

Determining the values 𝑝, 𝑞, 𝑟 and applying (21) the image equations are 

 
2 2

2 2

2 2

1 1
´ ,

1 1
´ 1 1 .

q p
x x y

r r

p p
y r x r y r z

r r

 
    

 
        

 (38) 

 

Calculation of image equations for the option of specifying orthogonal axonometry by lengths 

of an axonometric triangle is possible. It is, however uselessly intricate and not very often used 

in computer graphics.  

6 Conclusions 

We pointed out advantage of axonometry in comparison to Monge projection and linear 

perspective. Various options were shown how orthogonal axonometry could be determined 

regarding to image equations of a point. Our main goal was to deduce transformation relations 

between four considered options: the angles 𝛼, 𝛽  formed by axonometric images of axes and 

Cartesian planar axes in the image plane; the values of coefficients of change - 𝑝, 𝑞, 𝑟; the 

lengths of sides of axonometric triangle or their ratio; and the angles 𝜑, 𝜓 determining position 

of the image plane in the space.  

 

Finally, we derived formulas for calculation of coordinates of axonometric image of and 

arbitrary space point using various possibilities of orthogonal axonometry specification. 
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Abstracts 
 
 
M. Bizzarri, M. Lávička, J. Vršek:  Note on determining approximate symmetries of 
planar algebraic curves with inexact coefficients 

This paper is devoted to a certain modification of the recently published method for an 
approximate reconstruction of inexact planar curves which are assumed to be perturbations 
of some unknown planar symmetric curves. The input curve is given by a perturbed 
polynomial and the reconstruction steps follow the results from the recently published 
papers. The functionality of the designed approach is presented on particular examples. 

P. Magrone: Sierpinski’s curve: a (beautiful) paradigm of recursion     
This paper focuses on the original articles written by Waclaw Sierpinski in 1915, when he 
introduced the recursive structure that bears his name, the Sierpinski’s triangle. His first aim 
was to exhibit the example of a new set, a curve traced starting from the geometry of the 
well-known triangle. The triangle, which embodies geometric recursion, was rigorously 
defined in 1915, but appeared also before Sierpinski, and is still a reference point for 
scientists. 

H. Stachel: Moving ellipses on quadrics 

For each regular quadric in the Euclidean 3-space, there is a three-parameter set of cutting 
planes, but the size of an ellipse or hyperbola depends only on its two semiaxes. Therefore, 

on each quadric Q there exist ellipses or hyperbolas with a one-parameter set of congruent 

copies, which can even be moved into each other. For the case of ellipses, we present 
parametrizations of motions on ellipsoids, hyperboloids, and paraboloids. These motions are 
closely related to the theory of confocal quadrics. 

M. Vojteková, O. Blažeková: Orthogonal axonometry: How can it be determined? 

In technical drawing and in architecture axonometric projection is a form of two-dimensional 
representation of three-dimensional objects. The goal is to preserve a spatial impression 
without distortion due to the distance from an observer. In this paper we give new 
possibilities to determine an orthogonal axonometry, transformation relations between them, 
and image equations of a point in orthogonal axonometry based on these options of 
determination. 
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