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The curves of Eduard Lehr
Péter Salvi

Abstrakt Abstract
Trieda kriviek, ktorých krivosť je
goniometrickou funkciou dĺžky oblúka,
sa počas minulého storočia mnohokrát
objavovala v rôznych kontextoch. Ako
prvý sa jej štúdiu venoval Eduard Lehr v
relatívne neznámej práci. Vzhľadom na
obnovený záujem o túto problematiku v
oblasti estetických kriviek [8], zhrnieme v
tomto článku jej najdôležitejšie výsledky.

The class of curves whose curvature is a
trigonometric function of the arc length has
appeared multiple times in the last century,
in different contexts. It was first studied by
Eduard Lehr, in a relatively obscure work. Due
to renewed interest in it within the field of
aesthetic curves [8], we summarize its most
important results in this paper.

Kľúčové slová: estetické krivky,
trig-estetické krivky, elastika

Keywords: aesthetic curves, trig-aesthetic
curves, elastica

1 Introduction

Aesthetic plane curves are often defined by their Cesàro equation, i.e., the curvature as a function
of arc length. A well-known example is the class of log-aesthetic curves [5], but a few other
types are also briefly explored in Alfred Gray’s textbook (Sections 5.3–5.4) [1], including one
where

κ(s) = c sin s, (1)

with c being an arbitrary constant. This is quoted in Stephen Wolfram’s A New Kind of Science
(p. 418, example (j) in the figure) [9], and the corresponding note on p. 1009 adds that the case
of κ(s) = a sin(bs) ‘was studied by Eduard Lehr in 1932’. Lehr’s dissertation [3] was already
in Gray’s bibliography, although no explicit reference was made there.

The curve in question, in slightly different form, has been used in geophysics to model river
meandering since the 1960s [4], as it closely resembles the naturally occuring shape of elastica.
There it is called a sine-generated curve, and it is defined by its tangent angle:

θ(s) = ω sin
2πs

L
. (2)

Here ω is the maximum turning angle and L is the total length. Deriving this we arrive at the
Cesàro equation

κ(s) =
2πω

L
cos

2πs

L
. (3)
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Fig. 1. Trig-aesthetic curves (Eq. 4) for various c values. The s = 0 points are
always placed on the dotted line.

Recently, the simplified formulation

κ(s) = cos
s

c
(4)

was proposed as an intrinsically fair curve representation, by the name trig-aesthetic curve (see
Fig. 1) [8].

It appears that the first study of this class of curves was carried out by Lehr, but his work is in
German, and it is available only in a handful of libraries. This paper aims to summarize his
most important results.

2 Who was Eduard Lehr?

Eduard Lehr was born in 25 July 1906, in Ingolstadt, to Franz Xavier Lehr, a senior teacher
and headmaster in Munich. He studied to be a teacher and passed the examinations in 1929–
30, while also working as an assistant for descriptive geometry at the Technical University of
Munich (then still called Technische Hochschule München). He wrote his dissertation there in
1932, first under the “father of glacier photogrammetry”, Sebastian Finsterwalder, then—after
his advisor’s retirement—under Josef Lense (known from the Lense–Thirring effect) [7].

He started his military training in 1936, and did military service during the Second World
War with various anti-aircraft artillery batallions in Nuremberg, Darmstadt and other places,
eventually rising to the rank of first lieutenant of the reserve. According to the assessments in his
military records (see Fig. 2a), he was a slender man of small build, quiet and earnest, somewhat
shy, but possessed a strong will. He lacked leadership skills, however, and in 1941, upon being
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(a) Excerpt from the military records (b) From his obituary

Fig. 2. Photos of Eduard Lehr.

appointed commander of a coastal battery, he suffered a nervous breakdown and requested a
transfer to the weather service.

In 1942 he married Barbara Horras, the daughter of a locomotive driver, but she died pregnant
in an air raid in 1945, leaving Lehr a childless widower. After the war, he was briefly suspended
from teaching due to his membership in the Nazi Party and other pro-nazi organizations.
Classified as a minor offender, he was reinstated in 1947; he taught mathematics and physics in
Traunstein and later in Munich. His last workplace was the Max-Planck-Gymnasium, where he
also acted as director from 1952 until his untimely death in 1955 (see Fig. 2b).

Apart from his dissertation, only one other scientific work is attributed to him, although we have
not been able to locate it: “Über die Dreiecksteilung von Vieleckern durch Ecktransversalen”
(On the triangulation of polygons using vertex transversals).

3 Lehr’s curves

The dissertation of Eduard Lehr bears the title ‘On curves whose curvature is a periodic function
of arc length’ (Fig. 3). It is dedicated to the analysis of the curve family defined by the intrinsic
equation

κ =
1

ρ
= a+ b cos(cs). (5)

Note the presence of the additional term a, which—as we will see below—adds many different
shapes to those in Equations (1) or (4).

In the following, we will distinguish the shape parameter of trig-aesthetic curves (Eq. 4) with a
hat (ĉ) to differentiate it from the c parameter in Eq. (5).

In the rest of this section, we will go through the main results of Lehr’s work, following largely
its original structure.

G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23 7
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Fig. 3. The cover page of Eduard Lehr’s dissertation.

3.1 General properties

We can assume without loss of generality that a ≥ 0, b > 0 and c > 0 (the b = 0 and c = 0 cases
are just circles). Due to the symmetric shape of the cosine function, it is enough to examine a half
period of the curve, starting from s0 = 0 and ending in s1 = π

c
. All symbols with indices 0 and 1

relate to these endpoints, e.g. θ0 is the starting tangent angle. The points themselves are denoted
by P0 and P1. Symbols with a bar (e.g. s̄) are associated with the inflection point. (Notations are
as in Lehr’s work, except for θ and φ, which have their roles reversed. Additionally, curvature
(κ) is often used, while only the radius of curvature (ρ) is seen in the original.)

Since ρ 6= 0 there are no cusps, and the curvature extrema are in the endpoints. We only have
an inflection when a ≤ b (which is actually just a flat point when a = b). The endpoints are the
only vertices (i.e., points where dκ/ds = 0).

The shape is defined by the ratio a : b : c, so we have only 2 degrees of freedom if we do not
care about the scaling. A simple convention is to fix κ0 = a + b = 1. To exclude rotations we
will also assume θ0 = 0, so

θ = as+
b

d
sin(cs) ⇒ θ1 =

aπ

c
. (6)

Consequently, when a
c

is an integer, the tangents at the endpoints are parallel. If in addition P1 is
on the normal line of P0 the curve is closed. When a

c
is not an integer, the whole periodic curve

remains inside a circle around M , where M is the intersection of the normals at the endpoints.
It becomes a closed curve only when

θ1 = mπ +
ν

n
π, (7)

8 G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23
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(a) Two pages with planar curves (b) A page with spherical curves

Fig. 4. Curves drawn by Eduard Lehr.

where m, n and ν are integers, ν and n are relative prime, and ν < n. In this case, the curve
will make n periods and ν full turns until it closes in itself, makingm extra loops at the vertices.
(See also Section 3.5 and Appendix A.)

We also define the excess angle as

φ = θ̄ − θ1 =
1

c

(√
b2 − a2 − a arccos

a

b

)
. (8)

Note that φ is imaginary for a > b. Lehr regards the φ = 0 (i.e., a = b), θ1 > 0 case as the base
form; other notable forms are (i) the intermediary forms, when θ1 > 0 and 0 < |φ| < ∞ (i.e.,
0 6= a 6= b 6= 0), and (ii) that which are now called trig-aesthetic curves (cf. Eq. 4), when a = 0.
All other cases are either circles or straight lines.

3.2 Related curves

Here we examine some derived curve expressions.

3.2.1 Evolute

Following Cesàro [2] (Section II, Eq. 13), Lehr defines a series of radii of curvature as

ρ(0) = ρ, ρ(k) = ρ
d

ds
ρ(k−1). (9)

(Here we also deviate slightly from Lehr’s notation, who uses ρ′, ρ′′, ρ′′′, . . . for the series of
radii of curvature.)

Then the arc length of the evolute is s′ = ρ, its radius of curvature is ρ′ = ρ(1); the tangent
angle is the same as of the original curve, i.e., θ′ = θ. Consequently, the evolute has cusps at
the endpoints.

G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23 9
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The differential equation form of our curves is

ρ2(1) = c2ρ4(b2ρ2 − (1− aρ)2), (10)

from which the intrinsic equation of the evolute is

ρ′2 = c2s′4(b2s′2 − (1− as′)2). (11)

3.2.2 Offset

The curve at distance p has arc length S = s + pθ, radius of curvature R = ρ + p, and tangent
angle Θ = θ. Since ρ = −p implies a zero radius of curvature, there will be a cusp there, except
when it coincides with the endpoint.

We can express our curve based on its offset:

S =
p

c

√
b2 −

(
1

R− p
− a
)2

+
1 + ap

c
arccos

1
R−p − a

b
, (12)

which becomes purely algebraic in the case of p = − 1
a
:

(aR + 1)2(a2c2S2 − b2) + a4R2 = 0. (13)

The intrinsic equation of the offset (from Eq. 10) is

P 2 = c2(R− p)4(b2(R− p)2 − (1 + ap− aR)2). (14)

The meaning of P is not discussed, but it is evidently

P = ρ(1) = R · dR

dS
. (15)

3.2.3 Involute

The involute has radius of curvatureR′ = s+p′, and the derivative of its arc length (w.r.t. the arc
length of the original curve) is dS′/ds = R′κ. Here p′ is the initial length of ‘unwrapped string’.
Although there is always a point where R′ = 0, there are no cusps, vertices or inflections.

Setting the starting parameter at the common point, the intrinsic equation for the involute is

2cS ′ = ac2R′2 + 2b(cR′ sin(c(R′ − p′)) + cos(c(R′ − p′))− cos(cp′)). (16)

3.3 Invariants

In his seminal work on intrinsic equations (Section IV/8), Cesàro [2] defines the invariant of a
curve family as a function of the first k radii of curvature that is constant zero. In the general
case, the invariant for our curves is

ρ3(ρ(1)ρ(4) − ρ(2)ρ(3))− 12ρ2ρ2(1)ρ(3) + 60ρ3(1)(ρρ(2) − ρ2(1)). (17)

10 G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23



The curves of Eduard Lehr

When a = b we get a simpler expression:

ρ2ρ(3) − 8ρρ(1)ρ(2) + 10ρ3(1), (18)

and also for the a = 0 case:

ρ2ρ(3) − 9ρρ(1)ρ(2) + 12ρ3(1).

As a side note, for trig-aesthetic curves (Eq. 4) we have

ĉ2 =
3ρ5 − 2ρ3

ρ(2)
, (19)

and inserting this in the differential equation form (10) with a = 0, b = 1 and c = 1/ĉ, we arrive
at the invariant

ρ(2)(ρ
3 − ρ) + ρ2(1)(2− 3ρ2), (20)

depending only on ρ, ρ(1) and ρ(2). An even simpler expression uses the derivatives of curvatures:

κκ′2 + κ′′(1− κ2). (21)

3.4 Plotting

The Cartesian coordinates of the curves can be given by integrating the cosine and sine of the
tangent angle. Assuming that the starting point is at the origin, and the starting angle is 0, we
arrive at the (x, y) coordinates(∫ s

0

cos

(
as+

b

c
sin(cs)

)
ds,

∫ s

0

sin

(
as+

b

c
sin(cs)

)
ds

)
, (22)

which is, however, a non-trivial integral. Lehr cites Nielsen [6] to have converted such ‘Lommel-
integrals’ to the solution of differential equations, and mentions their connection to Bessel
functions, but in the end these did not provide a solution. Still, the dissertation contains many
pages of exquisitely drawn curves (see Fig. 4) – how were these created?

Lehr plotted the integrands and used a planimeter (a mechanical tool for measuring the area
inside a closed curve) to compute the integrals. Computations were carried out with the help of
a calculator and a slide-rule. (See also Fig. 5.)

3.5 Analysis of subfamilies

In this section we will look at the characteristics of subfamilies. The classification is based on
the relation between a and b, with a = b constituting the base form.

3.5.1 a = b

See Figure 4a (No. 15–24) for some examples. As discussed before, these curves have no
inflections, just flat points, lying on a circle of radius x1/ sin θ1. The remaining vertices are on

G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23 11
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(a) Planimeter (b) Mechanical calculator (c) Slide rule

Fig. 5. Tools of the trade made in Germany in the 1930s.

Fig. 6. Appearing loops with a = b (θ1 = π
5 ,

6π
5 ,

11π
5 ).

another circle (concentric with the first) with radius x1 cot θ1 +y1. These circles degenerate to a
pair of parallel lines when θ1 = kπ (e.g. No. 24). In this case a single period of the curve takes
k full turns.

The curve is closed when θ1 is a rational multiple ofπ, otherwise it goes on infinitely (e.g. No. 21).
When θ1 = (m+ ν

n
)π, with ν and n relative prime and ν < n, the shape is ‘n-gonal’, and makes

µ = mn + ν full turns, so e.g. for No. 16 n = 3, µ = 4. As m grows, more and more extra
loops appear, see Figure 6, and also Appendix A.

3.5.2 a > b

We will start from the base form a = b and start to increase the a
b

ratio to see how the curve
reacts. For example with θ1 = π

2
, we get ellipse-like closed curves (No. 25–27 in Fig. 4a). There

are two dotted ellipses in each of the figures: one has the same curvatures at the vertices, and
the other has matching vertices (lying very close to the curve). As a

b
increases (4

3
, 2 and 4 in

these three figures) the curve more and more approaches the circle.

In the case of θ1 = π the base case is a series of loops, and increasing a
b

pushes them closer
together, thereby touching and intersecting each other, see Figure 7. Once again, the curve
approaches a circle when a

b
goes to infinity.

In general, modifying θ1 changes the shape according to the base form, while increasing a
b

makes
the loops more circle-like and thus pushes them closer together.

3.5.3 a < b

As this is a very versatile part of the family, we divide it further in our analysis.

12 G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23
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Fig. 7. Shrinking spring with θ1 = π (ab = 1, 43 ,
15
7 ,

19
5 ).

θ1 = 0 (a = 0). Let us first look at the subgroup θ1 = 0, which will serve as a basis for
understanding the other forms.

In this case it would suffice to look at the s ∈ [0, π
2c

] interval because of its symmetry. The
inflection point is at the center, i.e., s̄ = π

2c
, and its tangent angle there is given by θ̄ = b

c
. From

the boundary condition κ0 = a + b = 1 we know that b = 1, so this class is the same as the
trig-aesthetic curves, and θ̄ = ĉ. Several examples are shown in Figure 1 with the associated
shape parameters ĉ.

When θ̄ < π
2
, the curve looks like the wave

y = ρ0 tan2 θ̄ ·
(

1− cos

(
cot θ̄

ρ0
x

))
, (23)

which has the same vertex curvatures and inflectional tangent, but at the inflection point the
wave curve has larger (x, y) coordinates and arc length than our curve, so both its amplitude and
wavelength is larger. These deviations get larger and larger as θ̄ approaches π

2
.

When θ̄ grows over π
2
, the loops get more and more circular and more closely packed, first

touching and then intersecting each other. First a loop touches the next one, then, for a larger θ̄
value, the one adjacent to that, and so on; in the end it simultaneously touches all other loops and
becomes a closed curve when θ̄ ≈ 2.4048, the first zero of the Bessel function of the first kind
J0. Its shape is similar to that of Bernoulli’s lemniscate, although the latter has θ̄ = 3π

4
≈ 2.3562

and is slightly more elongated.

As θ̄ increases until π, the curve goes through the same process, but in the reverse order, touching
and intersecting loops recede until they are separated, and we again get a wave-like form, but
now there is an extra loop at the vertices.

For π ≤ θ̄ ≤ 2π, the wave contracts and expands in the same way as before, except for the extra
loops. The closed curve is obtained at θ̄ ≈ 5.5201, which is the second zero of J0 (see Fig. 8).
As one can imagine, the same things happen for 2π ≤ θ̄ ≤ 3π etc., just with more extra loops.
Note that the zeros of J0 approach 3π

4
+ (n − 1)π, so the series of closed curves approaches

Bernoulli’s lemniscate.

In general we can also state that for θ̄ ≤ π the curve resembles the elastica, see details in
Section 3.6.

θ1 = π
2

(a = c
2
). We start from the base form a = b, when the excess angle φ is 0, and start to

increase φ (by decreasing a and c, and increasing b). The curve starts to narrow, taking on a
biscuit-like shape, until its sides touch, and then intersect each other. Then we get back the base

G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 5 – 23 13
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Fig. 8. Lemniscate with loops (θ1 = 0, θ̄ ≈ 5.5201).

Fig. 9. The θ1 = π
2 family with growing φ value.

form rotated sideways, with two extra loops, see the top of Figure 9. From here on, the same
process is repeated, creating two new loops, and so on.

θ1 = π (a = c). Starting from the base form a = b (φ = 0), the curve contracts and then
expands as φ is increased, exactly like in the θ1 = 0 case, except for the extra loop that is already
present in the base form. See also Figure 10 showing the contraction phase.

Generalization. The base form is defined by θ1. Increasing φ converts flat points into two
inflection points and an arc with negative curvature between them, appearing as indentations or
bulges. As these grow larger, the curve seems to contract, and individual parts of the curve touch,
until eventually all vertices of a given type fall into the center of the curve. Then these vertices
move farther away from the center, and vertices with the other curvature start to approach it.
The process repeats as φ increases by π.

3.6 Comparison with elastic curves

The subfamily a = 0 is very similar to the elastica family studied by Jacob Bernoulli and Euler.
Since this has recently been also emphasized in a paper on trig-aesthetic curves [8], we will
show the correspondences in notation.

Fig. 10. The θ1 = π family with growing φ value.
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3.6.1 Elastica equations

Elastic curves have many definitions, based on pendulums, or the minimization of bending
energy while retaining arc length. The one used by Lehr (following Bernoulli) is that the
curvature at a given point is proportional to the distance from the line of force. Mathematically,
taking the x axis as the line, and the proportional factor −m2, this is described by the equation

κ = −m2y. (24)

Since dθ/ds = κ and dy/ds = sin θ, we obtain(
d2y

ds2

)2

=

(
1−

(
dy

ds

)2
)
m4y2. (25)

Now using v = dy/ds, we have(
v

dv

dy

)2

= (1− v2)m4y2, (26)

and taking square root

dv

dy
= ±
√

1− v2m2y

v
. (27)

Separating the variables and integrating, we get∫
v√

1− v2
dv = ±

∫
m2y dy. (28)

With u = 1− v2 (i.e., v dv = −1
2
du), this leads to∫

− 1

2
√
u

du = ±m
2y2

2
+ C. (29)

The integral of the left-hand side is just −
√
u = −

√
1− v2 (plus an integration constant

absorbed by C), so squaring both sides we obtain

1− v2 =

(
m2y2

2
+ C

)2

, (30)

where C also absorbs the ± sign. Finally this gives us

dy

ds
=

√
1−

(
m2y2

2
+ C

)2

. (31)

(Lehr jumps directly from Eq. (25) to Eq. (31), as the intermediate steps are straightforward. . . )

The above leads to an elliptic integral form of arc length:

s =

∫
y0

y

dy√
1−

(
m2y2

2
+ C

)2 (32)
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The intrinsic equation is then given by the use of the Jacobi elliptic function cn:

κ = m
√

2(1− C)cn(ms). (33)

Once again, this step is not trivial. Let us first formulate the differential equation for the elastic
curve. Deriving Eq. (24)

d2θ

ds2
=

dκ

ds
= −m2dy

ds
= −m2 sin θ, (34)

so

d2

ds2
θ(s) +m2 sin θ(s) = 0. (35)

Multiplying by dθ/ds and integrating it results in

1

2
κ2 −m2 cos θ = E, (36)

where E is the integration constant. Its value is not arbitrary, however: from Eq. (31) we know
that

√
1− cos2 θ = sin θ =

dy

ds
=

√
1−

(
m2y2

2
+ C

)2

, (37)

so cos θ = m2y2

2
+ C, and inserting it into Eq. (36) leads to

E =
1

2
(−m2y)2 −m2

(
m2y2

2
+ C

)
= −m2C, (38)

so once again using Eq. (36) we obtain

dθ

ds
= κ = ±m

√
2(cos θ − C). (39)

We can omit the sign as it will be absorbed by a constant later on. Separating the variables and
integrating, assuming s0 = 0, results in

s =
1

m
√

2

∫
dθ√

cos θ − C
. (40)

For convenience we change the variable to θ̂ = θ
2
, using the fact that cos θ = 1− 2 sin2 θ

2
:

s =

√
2

m
√

1− C

∫
dθ̂√

1− 2
1−C sin2 θ̂

=

√
2

m
√

1− C
· F
(
θ

2
,

2

1− C

)
, (41)

where F is the incomplete elliptic integral of the first kind. Here k2 = 2
1−C is called the

parameter, and k is the modulus. Denoting the value of the incomplete integral as u, we have

u = ms

√
1− C

2
=
ms

k
, (42)
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so θ
2

= am(u, k2), the Jacobi amplitude. This means that

cos θ−C = 1−2 sin2 θ

2
−C = 1−C−2sn2(u, k2) = 2

(
1

k2
− sn2(u, k2)

)
, (43)

so

κ = 2m

√
1

k2
− sn2(u, k2). (44)

Since dn2(u, k2) = 1− k2sn2(u, k2), we arrive at

κ =
2m

k
dn(u, k2) = m

√
2(1− C)dn(u, k2). (45)

Finally, using the relationship dn(u, k2) = cn(uk, 1/k2), we at last obtain the expression

κ = m
√

2(1− C)cn

(
ms,

1− C
2

)
. (46)

We see that in this form the modulus is
√

1−C
2

. Them parameter is essentially scaling the curve,
and only C controls the shape. In the differential equation form (Eq. 35), when used with fixed
boundary conditions θ(0) = 0 and κ(0) = 1, the shape is controlled by λ := m2.

By squaring Eq. (39) we get

κ2 = 2m2(cos θ − C), (47)

which for the above mentioned boundary conditions gives

1 = 2m2(1− C),

leading to the relationship

λ = m2 =
1

2(1− C)
. (48)

3.6.2 Comparison

Note that the ĉ parameter of trig-aesthetic curves is the same as θ̄, when the latter is real. Refer
to Figure 11 for a visual comparison: the associated numbers show the values of ĉ = θ̄ = 1

c
for

trig-aesthetic, and of λ for elastica curves, with the boundary conditions θ(0) = 0 and κ(0) = 1.
For rows where λ > 1

4
, trig-aesthetic curves were selected based on visual similarity, but not

necessarily with the same θ̄ value; the other examples are included to illustrate a variety of
forms.

Lehr divides the family into classes based on the value of the C integration constant, each
exhibiting a distinct shape type:

• C = 1 (λ =∞, θ̄ = 0): both curves degenerate to a line.
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2 0.7227
1 1.0472

0.5 1.5708

0.4 1.85

0.35 2.05

0.3027 2.4048

0.282.7

0.2513

0.254

0.2495

0.210

Fig. 11. Comparison of trig-aesthetic curves (black) and elastica (red) [8].

• 0 < C < 1 (1
2
< λ <∞, 0 < θ̄ < π

2
): both are similar to sine waves; vertex curvature is

±1 for both, but the amplitude and wavelength is smaller for trig-aesthetic curves.

• C = 0 (λ = 1
2
, θ̄ = π

2
): Lehr states that this is the only elastic curve that is also a

Ribaucour curve (with factor 2), i.e., the radius of curvature is proportional to the normal
directional distance to a given line. This seems not to be the case: here the curvature (and
not the radius of curvature) is proportional to the normal distance.

• −1 < C < 0 (1
4
< λ < 1

2
, π
2
< θ̄ < π): we further divide into 3 cases below.

– x̄ > 0: both curves touch, contract and intersect themselves, the difference in
amplitude is more and more visible.

– x̄ = 0: Bernoulli’s lemniscate is an intermediate form between the two, as can be
seen from the values of θ̄ (elastica: ≈ 130◦42′, lemniscate: 135◦, trig-aesthetic:
≈ 137◦47′13′′).

– x̄ < 0: the loops start to separate, much faster for the elastica than for trig-aesthetic
curves.

• C = −1 (λ = 1
4
, θ̄ = π): from here on, the two curves have no connection. In this special

case the elastica has the closed form(
− 2

m
sin

θ

2
+

1

m
ln tan

(
θ

4
+
π

4

)
,

2

m

(
1− cos

θ

2

))
. (49)
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• −∞ < C < −1 (0 < λ < 1
4
, θ̄ imaginary): the elastica takes on an ever-contracting

spring-like form, while the trig-aesthetic curve (π < ĉ < ∞) goes through contractions
and expansions as explained in Section 3.5.

• C = −∞ (λ = 0, θ̄ imaginary): corresponds to the case ĉ =∞; both curves are circles.

3.7 Space curves

As a generalization to 3D space, we can add a constraint on the radius of torsion τ , similarly to
Eq. (5):

1

τ
= α + β cos(γs+ δ). (50)

But the Frenet equations can only be integrated easily when δ = 0, c = γ, and αβ−ab = 0, i.e.,

1

ρ
= a+ b cos(cs),

1

τ
= α +

ab

α
cos(cs). (51)

These are all helices that can be constructed on a cylinder whose normal section is a curve of
Eq. (5).

Since this line of generalization does not seem to be very fruitful, Lehr turns to curves defined
on the sphere with geodesic curvature

κg =
1

ρg
= a+ b cos(cs). (52)

Since κ2 = κ2g + κ2n, and the normal curvature κn on a sphere of radius R is 1
R

, we have

1

ρ
=

√
(a+ b cos(cs))2 +

1

R2
,

1

τ
=

Rbc sin(cs)

R2(a+ b cos(cs))2 + 1
. (53)

IfR goes to infinity, the torsion approaches zero and we get back our original curves. Otherwise
this leads to a complex Riccati differential equation, but we can make some general remarks.

• The curves are periodic with period 2π
c

.

• The curvature is always positive, and maximal at the endpoints.

• The minimal value of (ordinary or geodesic) curvature is at the midpoint s = π
c
, where

the torsion is zero.

• The geodesic curvature becomes zero when cos(cs) = −a
b

(occurs for two values when
a < b, symmetric to the midpoint).

For easier analysis and plotting, Lehr uses stereographic projection onto the equatorial plane
(see Fig. 4b). For a spherical point (x, y, z) the projection is

(ξ, η) =
R

R− z
(x, y), (54)
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while the inverse projection is

(x, y, z) =
1

ξ2 + η2 +R2
(2R2ξ, 2R2η,R(ξ2 + η2 −R2)). (55)

A circle around a projected point (ξ0, η0) with radius ρ0 is also a circle on the sphere in the plane

Ax+By + Cz +D = 0 (56)

with A : B : C : D being

2Rξ0 : 2Rη0 : ξ20 + η20 − ρ20 −R2 : −R(ξ20 + η20 − ρ20 +R2). (57)

Then the radius of the 3D circle ρ depends on the distance δ of the plane from the center
(ρ2 = R2 − δ2). Consequently:

ρ2 =
4R4ρ20

(ξ20 + η20 − ρ20 −R2)2 + 4R2(ξ20 + η20)
. (58)

If we now look at a circle going through (ξ∗, η∗) with tangent angle t∗ (measured from the
positive ξ axis), we get

ξ0 = ξ∗ ± ρ0 sin t∗, η0 = η∗ ∓ ρ0 cos t∗, (59)

so if we introduce d2 = ξ∗2 + η∗2 for the squared distance of the point from the origin, and
c = ±ξ∗ sin t∗ ∓ η∗ cos t∗ for the signed distance of the origin from the tangent line, we arrive
at

ρ2 =
4R4ρ20

(d2 + 2ρ0c−R2)2 + 4R2(d2 + ρ20 + 2ρ0c)
, (60)

and then

ρ0 =
(d2 +R2)ρ

2(Rδ − cρ)
=
d2 +R2

2(e− c)
, (61)

with e = Rδ
ρ

.

For a spherical curve with known geodesic curvature, the curvature circle is obtained by inter-
secting the sphere with the osculating plane. From this we can compute the curvature circle in
the plane, whose radius gives the radius of curvature for the projected curve (note that with ρ
being the radius of curvature, we have e = R2

ρg
). Now we have all information to plot the 2D

image of the curve.

Let us take example No. 31 in Figure 4a (a trig-aesthetic curve with ĉ = 11
14

), and create its
geodesic curvature version on a large sphere. The resulting curve is very similar (see Fig. 4b,
No. 89, ρg(0)/R = 0.4). As we reduce the sphere’s radius, the vertices approach each other,
and then separate again (No. 90–94, ρg(0)/R = 1, 1.2, 1.37, 1.4, 2). The curve can also close
on itself, as shown in No. 95 (ρg(0)/R = 2.94). As R approaches 0, the curve approximates a
great circle of the sphere.
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Fig. 12. Applet for experimenting with base forms.

4 Conclusion

Eduard Lehr described the curve family defined by Eq. (5), investigating the parameters’ effect
on its different shapes, including the base forms and what are now called trig-aesthetic curves.
Notes on derived curves (evolute, offset and involute) were supplied. A comparison to Euler’s
elastica was also included, as well as preliminary work on generalization to space curves,
particularly to spherical curves.

In this work we have aimed to extract the most interesting parts from Lehr’s dissertation, and
also supplemented it in several places, notably on the derivation of the elastic curve, and by the
addition of a figure comparing it to trig-aesthetic curves. Several errors in the equations were
corrected, and some biographical background on Lehr was also included for completeness.
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Appendix A Applet for exploring base forms

The TCL/TK applet in Figure 12 is a convenient tool for plotting different base forms; it can also
be easily modified to investigate other curves. Here a = b = 1 and c = nsides/nloops = n/µ.
The source code is shown in Figure 13.
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Fig. 13. TCL/TK source for the applet in Fig. 12.
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and surface reconstruction 

 
Šárka Voráčová 

 
 

Abstrakt 

Problém minimálneho kostrového stromu 

(MST) bol v literatúre spomenutý už v roku 

1926, čo z neho robí jeden z najstarších 

a najdôkladnejšie skúmaných problémov 

v oblasti výpočtovej geometrie. Okrem 

svojho trvalého teoretického a algo-
ritmického významu má MST široké 

uplatnenie pri riešení mnohých praktických 

úloh analýzy dát, ako aj pri segmentácii 

obrazu a rekonštrukcii kriviek a plôch. 
V tomto článku predstavujeme metódy na 

rekonštrukciu kriviek a plôch pomocou 

algoritmu euklidovského MST, ktorý môže 

zabezpečiť, že rekonštruovaná krivka bude 

efektívna z hľadiska konektivity a vzdia-
lenosti. 
Kľúčové slová: euklidovský minimálny 

kostrový strom, rekonštrukcia kriviek, 

rekonštrukcia plôch, zhlukovanie 

  Abstract 

The Minimum Spanning Tree problem has 
been referenced in the literature as early as 
1926, making it one of the oldest and most 
thoroughly studied problems in 
computational geometry. Alongside its 
enduring theoretical and algorithmic appeal, 
the MST is valuable for addressing 
numerous practical data analysis problems as 
well as image segmentation and 
reconstruction of the curve and surfaces. 
In this paper, we present curve and surface 
reconstruction methods using the Euclidean 
MST algorithm. The MST can help ensure 
that the reconstructed curve is efficient in 
terms of connectivity and distance.   
 

Keywords:  Euclidean minimum spanning 
tree, curve reconstruction, surface 
reconstruction, clustering 

1 Introduction 

The Euclidean minimum spanning tree (EMST) problem has applications in many fields, and 
many efficient algorithms have been developed to solve it. With references in the literature as 
early as 1926, the minimum spanning tree (MST) problem is one of the oldest and most 
thoroughly studied problems in computational geometry. In addition to this long-standing 
theoretical and algorithmic interest, the MST is useful for many practical data analysis 
problems. Many optimization problems can be posed in the search for the MST in a network. 
The MST is also used as an approximation for the traveling salesman problem [4], in document 
clustering, mesh generation [11], and curve and surface reconstruction [13], [15].  

MST of the graph connects all the vertices, without any cycles and with the minimum possible 
total edge weight. EMST can be found as the minimum spanning tree of a complete graph with 
the points as vertices and the Euclidean distances between points as edge weights. 

The problem of MST was first published in 1926 by Otakar Borůvka in the paper “O jistém 

problému minimálním” [5] as a method of constructing an efficient electricity network for 
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Moravia. This algorithm is often referred to as Sollin's algorithm, particularly in the context of 
parallel computing literature [16]. Borůvka’s algorithm is well-suited for parallelization, as the 
selection of minimum-weight edges for each component can be done independently.  

The standard procedure, known as Prim's algorithm, was formulated by the eminent number 
theorist Vojtěch Jarník in response to Borůvka's work [12], [16]. 

Finding the nearest neighbor of components in a spanning forest is the computational bottleneck 
in both traditional MST algorithms like Kruskal’s and Prim’s and more advanced 

methods [1], [3], [6]. Borůvka’s algorithms require at most log V steps and a running time of 
O(E log V), where E is the number of edges and V is the number of vertices. Variants for planar 
graphs work with linear time complexity. 

2 Euclidean Minimum Spanning Tree 

Computing the Euclidean Minimum Spanning Tree (EMST) is a classic problem in 
computational geometry. Similar to the MST, it is utilized in various applications such as 
clustering, pattern classification, surface reconstruction, TSP approximations, and computer 
graphics. 

The edges of the minimum spanning tree meet at angles of at least 60°, with equality only when 

they form two sides of an equilateral triangle. This is because, for two edges forming any 
sharper angle, one of the two edges could be replaced by the third, shorter edge of the triangle 
they form, forming a tree with a smaller total length. Euclidean minimum spanning tree is 
a  subgraph of other geometric graphs including the relative neighborhood graph and Delaunay 
triangulation. By constructing the Delaunay triangulation and then applying a graph minimum 
spanning tree algorithm, the minimum spanning tree of given planar points may be found in 
linear time.  

Traditional EMST methods scale quadratically, and many advanced algorithms have been 
created to solve the problem on general graphs. Fredman and Tarjan [7] demonstrated a bound 
of O(E log V) for V points and E edges by using Jarník's algorithm with the Fibonacci heap data 
structure. However, these general algorithms are not suitable for large problems because they 
depend linearly on the number of edges. In the case of Euclidean graphs, the edge set consists 
of all pairs of points. Thus, linear scaling in E corresponds to quadratic scaling in the number 
of points V, necessitating the consideration of alternative approaches.  

Shamos & Hoey [17] applied the Voronoi diagram to constructing the MST in the Euclidean 
plane. The Voronoi diagram can be constructed in O(V log V) time and contains O(V) edges. 
Since the MST is a subset of the edges in the dual of the Voronoi diagram, the MST can be 
found in O(V log V) time using one of the algorithms above. Agarwal et al. [1] showed that the 
EMST problem is linked to solving bichromatic closest pairs for specific subsets of the input 
set. The bichromatic closest pair problem is defined as follows: given two sets of points, one 
red and one green, the task is to find the red-green pair with the minimum distance between 
them. By employing a geometric approach that leverages well-separated pair decomposition 
(WSPD), it is possible to efficiently achieve a time complexity of O(V log V) when constructing 
the EMST in a three-dimensional space.  
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3 MST-based Clustering 

Minimum Spanning Tree-based clustering is an unsupervised machine learning technique that 
identifies clusters by leveraging graph theory. It constructs an MST from a given dataset's 
distance graph and removes edges that exceed a certain threshold to create distinct clusters. In 
the clustering literature, this is often referred to as single-linkage clustering. The definition of 
inconsistent edges is a major issue that has to be addressed in all MST-based clustering 
algorithms. 

 
Fig. 1.  Example dataset and their Euclidean minimum spanning trees. MSTs often lead  

  to representations of well-separable clusters of arbitrary shapes. 

This method was described in the 1970s [2], and recent advancements in MST-based clustering 
have led to the development of various innovative algorithms and methodologies [9]. In 1969 
Gower and Ross [10] showed the equivalence between the naive clustering algorithm and 
Kruskal's algorithm for minimum spanning trees. How well particular MST-based methods 
perform in general and whether they are competitive relative to other popular clustering 
procedures is still an open problem [9]. 

In practice, many algorithms construct simpler representations (samples) of the search space to 
make the identification of clusters more tractable. For instance, in the well-known K-means 
algorithm by Lloyd, we iteratively seek k cluster centroids so that a point’s cluster 

belongingness can be determined through the proximity thereto. By contrast, the second most 
famous algorithm Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
identifies clusters based on density, grouping points with sufficient neighbors while marking 
outliers [7]. It does not require specifying the number of clusters and excels in detecting 
arbitrarily shaped clusters (Fig. 2). 



Šárka Voráčová 

 

 

28 G – slovenský časopis pre geometriu a grafiku, ročník 22 (2025), číslo 43, s. 25 – 32 

 

 
Fig. 2.  Left: Distinct points on well-sampled two squares were safely distinguished,  

the edge length criterion for MST-based clustering can be safely set. 
  Right: A relatively good sample of three circles correctly distinguished MST-based  
  clustering, in contrast, DBSCAN incorrectly separated the points of the circles. 

4 Curve Reconstruction 

Our goal is to apply EMST to a point cloud and test the curve reconstruction capabilities of this 
method for different types of data. Curve reconstruction entails creating a continuous curve that 
accurately represents a given set of points. The main problem is to correctly distinguish sets of 
points belonging to different continuous parts of curves, to divide the point cloud into individual 
clusters. Cluster analysis deals with this problem and motivated our choice of minimal spanning 
trees as shape descriptors for curves. 

The algorithm for curve reconstruction using MST can be delineated into four steps: 

1. Complete weighted graph: Create a complete graph where each point is a node, and the edges 
represent the pairwise distances. This involves using Euclidean distance or any other suitable 
distance metric that is relevant to the data. 

2. Minimum Spanning Tree on the complete graph.  

3. Path Extraction from MST: This involves starting from an arbitrary point and traversing the 
MST to create a sequence of points. 

4. Curve Interpolation: The points can be further smoothed or interpolated to get a continuous 
curve. Techniques such as spline interpolation (for example B-splines) or piecewise linear 
interpolation can be applied to generate a smooth curve from the discrete points obtained from 
the MST. 

In our algorithm, we combine the EMST approach with the statistical method for local 
approximation using the moving squares method. To prevent the effects of unwanted points in 
the local regressions, we need to make a certain structure (as simple as possible) for the point 
set to define the connectivity of the point elements. We calculate the average edge length (μ) 

and standard deviation (σ) of the edge lengths. Then the tree was pruned by removing all edges 

longer than μ + kσ, where k is a suitable constant. The choice of k affects the level of detail in 
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the reconstruction. A smaller k preserves more details but may introduce noise, while a larger 
k produces a smoother but less detailed reconstruction. 

The next step is to separate the components of the graphs representing the different curves: 

1. Identify the endpoints: Vertices with degree 1 in the pruned EMST. 

2. Traverse the pruned EMST: Start from an arbitrary endpoint and follow the edges, always 
choosing the edge that forms the smallest angle with the previous edge. If a junction (a vertex 
with degree > 2) is encountered, choose the edge that forms the smallest angle. Continue until 
reaching another endpoint or return to the starting point. 

3. Handle branching: Connect appropriate branches at junction points. In the case of closed 
curves, it may be necessary to connect the last point to the first point if they are close. 

4. Smooth the reconstructed curve (optional). 

 
Fig. 3.  Enhanced Minimum Spanning Tree from Noisy Points. 

5 Surface Reconstruction 

Cluster analysis is essential for 3D reconstruction, especially in organizing and segmenting 
point cloud data gathered from laser scanning, photogrammetry, or depth sensors. By grouping 
points based on their spatial proximity and geometric similarity, clustering helps to identify 
significant structures, filter out noise, and enhance surface reconstruction processes. 

For the segmentation of 3D point cloud data, we applied the same clustering algorithms as those 
used in planar analysis. Our experiments demonstrated comparable segmentation performance 
using K-Means and DBSCAN, with both methods successfully identifying distinct surface 
regions. The effectiveness of clustering in 3D reconstruction was strongly influenced by the 
density of sampled points, as well as the levels of noise.  

Our reconstruction of a 3D surface from a point cloud is largely dependent on the integration 
of the Minimum Spanning Tree (MST) methodology, which is applied to identify contiguous 
regions and surface texture. The use of geometric and graph-based approaches improves the 
creation of optimized networks that emphasize both geometric accuracy and computational 
efficiency. 
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Fig. 4.  A good sample of points from two cylindrical surfaces sufficiently far apart is  

 correctly separated by both EMST and k-means clustering for k = 2. 

In this study, we compared MST-based clustering with traditional methods such as K-Means 
and DBSCAN. To ensure a comprehensive evaluation, we generated synthetic datasets enriched 
with varying levels of noise and assessed clustering performance on samples representing 
segments of cylindrical surfaces, spheres, and planes in different spatial configurations. The 
analysis focused on the ability of each method to accurately capture cluster structures under 
varying noise conditions and geometric complexities. Our findings provide insights into the 
strengths and limitations of MST-based clustering relative to density-based and centroid-based 
approaches in complex spatial distributions. 

 
Fig. 5.  Color-coded DBSCAN results for the low-noise sample and the higher-noise,  

 unevenly sampled points. For both samples, MST-based clustering accurately  
 identified points belonging to the three planes, whereas DBSCAN's resulting 
 coloring was less precise. 
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Note. MST is used in triangulation mainly as an initial step or as part of more complex 
algorithms [15]. The basic idea is that the Minimum Spanning Tree (MST) provides a skeleton 
for triangulation, capturing the key connections between points. The procedure can be 
simplified into three main steps. First, an MST is constructed for a given set of points. Next, 
additional edges are added to the MST to form a triangulation. Finally, the triangulation is 
optimized, for example, by applying the Delaunay criterion to improve its properties. 

6 Conclusion 

The use of the Minimum Spanning Tree (MST) for curve and surface reconstruction offers 
several advantages, particularly in capturing complex, non-uniform structures. Unlike centroid-
based methods such as K-Means, MST-based clustering does not require predefined cluster 
counts and can adapt to varying point densities. This makes it particularly effective for 
reconstructing irregular surfaces and handling topological continuity. In our experiments,  
MST-based clustering achieved successful segmentation in 79% of cases, even when samples 
were intentionally degraded with varying levels of noise. This demonstrates its robustness in 
scenarios where data completeness and uniformity are compromised. Additionally, MST 
naturally preserves geometric connectivity, making it well-suited for reconstructing continuous 
features in scattered point clouds. 

However, MST-based approaches also present limitations. The computational complexity of 
constructing an MST can be higher than that of K-Means, especially for large-scale datasets. 
Moreover, MST methods can be sensitive to outliers, which may create artificial connections 
between unrelated points. In our study, K-Means achieved the highest segmentation success 
rate (85%), but only when the number of clusters was manually specified. In contrast, DBSCAN 
performed the worst (53%), likely due to its reliance on density thresholds, which struggled 
with non-uniformly sampled surfaces. These results highlight the strengths of MST in adaptive 
clustering while also underscoring its challenges in handling noise and scalability compared to 
established clustering techniques. 

The utilization of Minimum Spanning Trees (MST) in triangulation processes offers several 
notable benefits. MST provides a solid starting point for establishing connections between data 
points, laying the groundwork for further triangulation refinement. Triangulations derived from 
MST often result in configurations with shorter overall edge lengths, although the MST alone 
does not guarantee an optimal solution. It proves to be a valuable initial step, potentially 
requiring further optimization to achieve the desired results. MST is instrumental in revealing 
underlying structures within datasets by highlighting key connections, aiding in pattern 
recognition, and facilitating cluster identification. 
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Pedal curves – a playground for generalizations 
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Abstrakt 

Primárne téma ,,úpätnicové krivky a plochy” 

patrí do klasickej diferenciálnej geometrie 

euklidovskej roviny alebo priestoru. 
Zostrojujeme priesečníky dotyčníc krivky c 
s kolmými priamkami istého zväzku. Pre 

tento základný koncept však existuje 

neuveriteľné množstvo rôznych modifikácií 

a zovšeobecnení a je široko používaný v 

základných kurzoch matematiky ako 

aplikácia rôznych oblastí geometrie 

a matematiky. Okrem didaktických prínosov 

tohto učebného materiálu možno stojí za 

zmienku poukázať aj na kľúčové stratégie 

výskumu v geometrii/ matematike,  stratégiu 

zovšeobecňovania a zjednocovania. Tu sa 
projektívne geometrické hľadisko javí ako 

veľmi užitočné. Článok sa snaží poskytnúť 

prehľad o existujúcich zovšeobecneniach 
a tiež pridáva niektoré ďalšie. 
Kľúčové slová: pedálna krivka – úpätnica, 

pedálne zobrazenie, korelácia, Minkowské-
ho normovaná rovina, afinná normála, 

relatívna normála, priamková kongurencia   

  Abstract 

Primarily the topic “pedal curves and 

surfaces” belongs to classical differential 

geometry in the Euclidean plane or space. 
One intersects the tangents of a curve 𝑐 with 
orthogonal lines of a pencil. Meanwhile, for 
this basic concept there exist incredible 
many modifications and generalizations, and 
it is widely used in undergraduate 
mathematics courses as an application of 
different parts of geometry and mathematics. 
Besides the didactical benefits of such an 
exercise material it might be worth pointing 
to a key strategies for geometric/ 
mathematical research, the generalization 
strategy and the unifying strategy. Here the 
projective geometric point of view seems 
very helpful. The paper tries to give an 
overview of existing generalizations and 
adds some additional ones. 
Keywords: pedal curve, pedal mapping, 
correlation, circle geometry, Minkowski 
normed plane, affine normal, relative 
normal, line congruence 

1 Introduction  

The topic “pedal curves and surfaces” interacts with elementary differential geometry, 

kinematics, analytic geometry and linear algebra, with polarity and inversion, and with classical 
algebraic geometry. The simplicity of the construction makes it a perfect and stimulating 
trainings material in mathematics courses. One intersects the tangents of a curve 𝑐 with 
orthogonal lines of a pencil Λ, Fig. 1. The common point 𝑂 of Λ is called the “pole” of the pedal 

construction. For references see e.g. [10], [23]. In a more abstract sense one combines 
a differentiable object and an orthogonality structure to define “pedality”. Thereby the 

orthogonality structure can be extrinsic, e.g. Euclidean, or intrinsic, e.g. defined by the affine 
normals of the curve 𝑐. The extrinsic orthogonality structure can also be non-symmetric, e.g. 
the Birkhoff-orthogonality in Minkowski normed planes (c.f. [20]), or simply a non-involutoric 
projectivity in the real affine plane. There exist already far-reaching generalizations concerning 
the dimension and structure of the place of action, which lead to an unmanageable number of 
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references to this widely ramified topic. This can be noticed, when googling the concept “pedal 

curves”, see [23]. For example, a classical generalization of the concept “pedal curve” replaces 

the pole 𝑂 and its pencil of lines by the tangent set of a curve 𝑐. When we intersect pairs of 
orthogonal tangents of 𝑐 and 𝑜, we then call the resulting curve 𝑐’  the “orthoptic curve” of the 

two curves 𝑐 and 𝑜, c.f. e.g. [26]. Another approach could use 𝑜 to define a relative-differential 
geometric concept of an orthogonality. Here, and using affine normals of a planar curve, we 
speak of an “intrinsically defined orthogonality concept”. Finally, it is obvious that the different 
viewpoints of pedality can be treated in higher dimensions, too. For example, line geometric 
generalizations seem to be a rather new topic. 
 
Far from presenting a complete overview, the following chapters will deal with widely well-
known modifications of the pedal construction. Thereby a unified geometric approach comes 
to the fore.  
 
2 The basic construction 

One intersects the tangents of a curve 𝑐 with orthogonal lines of a pencil Λ, Fig. 1. The common 
point 𝑂 of Λ is called the “pole” of the pedal construction. For analytic treatment, this point 𝑂 
always can be used as the origin of a (Cartesian) coordinate frame, see e.g. [2], [7], [6, p.161]. 
It seems useful to enclose the Euclidean plane by an ideal line and use projective coordinates.  
Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑡 ∈ 𝐼 ⊆ ℝ, be functions with no common zero in 𝐼,  then the equation 
𝑎(𝑡)𝑥 +  𝑏(𝑡)𝑦 +  𝑐(𝑡) = 0 describes the tangents of a curve 𝑐, and −𝑏(𝑡)𝑥 + 𝑎(𝑡) = 0 
describes their normal through the origin 𝑂, which we choose as the pole for the pedal 
construction. Their intersections 𝑃′(𝑡) are the result of the formal cross-product  
(𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡))𝑇 × (0, −𝑏(𝑡), 𝑎(𝑡))𝑇 ,  (in projective coordinates ((𝑥0: 𝑥1: 𝑥2) of the enclosed 
Euclidean plane) 

(𝑎(𝑡)2 + 𝑏(𝑡)2 ∶  −𝑎(𝑡)𝑐(𝑡) ∶  −𝑏(𝑡)𝑐(𝑡))𝑇 .   (1) 

This shows that, if 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) describe an algebraic line curve 𝑐∗ of degree 𝑚, (the class 
of the corresponding point curve 𝑐 ), then 𝑃′(𝑡) traces an algebraic point curve 𝑐’ of degree 2𝑚.  
 

 
 

Fig. 1.  The kinematic of the pedal motion with its map of instantaneous rotation  
        centers allows to construct the tangent of the pedal curve 𝑐’ of a curve 𝑐. 

 
In Fig. 1 we add a kinematic generation of the curve 𝑐’. We take the fixed point 𝑂 as belonging 
to the fixed plane Σ0 and the moving system Σ1 instantaneously rotating at 𝑄 ∈ Σ0. This forces 
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the right-angle hook Σ3 to slide through Σ1 at 𝑃 and through a system Σ2 fixed at 𝑂 and which 
rotates there. The instantaneous motion causes poles 𝑗𝑘 of Σ𝑗  against Σ𝑘, such that we get the 
pole 30 of Σ3 against Σ0 via the so-called “three-pole theorem” of S. Aronhold-Kennedy, (see 
e.g. [12, p. 173], [24, p. 120], or [1]). This allows even to construct the tangent of 𝑐’ at 𝑃′(𝑡). 
The mapping of the tangent at 𝑃(𝑡) ∈ 𝑐 to 𝑃′(𝑡) ∈ 𝑐′ is called the “pedal mapping”, and it can 

of course be applied to any point 𝑌 fixed in Σ3. Furthermore, the pedal mapping 𝜓 maps line 
elements to line elements. 
 
The very special construction of 𝑃′ and the pedal mapping defined by 𝑐 and 𝑂  can also be seen 
as the product of a polarity at a circle 𝜔 with center 𝑂 and the inversion at 𝜔, see e.g. [4], [5] 
and Fig. 2.  This allows to interpret the Euclidean construction also as performed in the Klein-
model of a hyperbolic plane with 𝜔 as the “ideal conic”, a Euclidean circle with pole  𝑂1 as 
center, see Fig. 3. 

 
 

Fig. 2.  Construction of the pedal point 𝑃’ to a point 𝑃 via the product of  
    a polarity at a circle 𝜔 centered at the pole 𝑂 and the inversion at 𝜔. 

 

 
 

Fig. 3.  Construction of the pedal points and curves of a circle 𝑐 to  
             different poles 𝑂𝑖 in the F. Klein-model of a hyperbolic plane. 
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A simple generalization can replace the classical inversion by a Hirst inversion at an arbitrary 
conic, see [8], [9]. 
 
As the theorem of Aronhold-Kennedy is valid also the hyperbolic kinematic, it is possible to 
add also the hyperbolic modification of the construction of a tangent to the image curves 𝑐𝑖

′, see 
the instantaneous pole “30” in Fig. 3 for the curve 𝑐2

′ .  Furthermore we can modify the classical 
inversion with a fixed circle 𝜔 and its center 𝑂 to a “Hirst inversion” in a real projective plane 

𝜋 based on a real or imaginary conic 𝜔 and an arbitrarily chosen point 𝑂 as center. By replacing 
the conic 𝜔 by its polarity 𝜔̅ the well-known Hirst inversion is defined as a mapping 𝜄: 𝜋 →  𝜋 
with the property 

𝜄: 𝑋 ↦ 𝑋′  with 𝑋′ = 𝑂𝑋 ∩ 𝑋𝜔̅    (2) 
 

As a first round-up we can formulate: 
 

Result 1. The pedal point construction works in any Caley-Klein plane with non-degenerate 
orthogonality. The corresponding pedal mapping can be seen as the product of a polarity at 
a real or imaginary conic 𝜔 and a Hirst-inversion at 𝜔  with respect to a given pole 𝑂.  
 
Remark 1. From the pedal point construction in the F. Klein-model of the hyperbolic plane it 
suggests itself to dualize the concept “pedal curve”. We shall follow this extension of the 

concept “pedal curve” at another place. 
 
3 Directly related concepts:  negative- and contra-pedal curves legacy 

References concerning pedal curves speak of the “negative pedal curve” as a modification of 

the classical pedal curve construction, see e.g. [10], [21], [23]. Let 𝜓𝑂: 𝑐 → 𝑐′ be the pedal 
mapping defined by 𝑐 and pole 𝑂, then the reverse pedal mapping 𝜓𝑂

−1: 𝑐′ → 𝑐 is the negative 
pedal mapping defined by 𝑐’ and the same pole 𝑂. This concept allows us to iterate the pedal 
point construction to both sides. For example, if 𝑐 is a circle and we choose 𝑂 ∈ 𝑐, then  
𝜓𝑂

−1(𝑐) = 𝑐−1 is a point, and 𝑐 simply the Thales circle over [𝑂, 𝑐−1]. Fig. 4 shows such an 
iteration with a circle 𝑐 and the pole ∈ 𝑐 . 

 

 
  

Fig. 4.  Iteration of the pedal mapping starting with a circle 𝑐,  in this case,  
  together with the single negative pedal mapping. 
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It is obvious, that the orbit of points 𝑃, 𝑄 ∈ 𝑐 are logarithmic spiral polygons with spiral pole 
𝑂, but they are not spirals of the same iterated similarity transformation. For example, the spiral 
polygons (𝑃, 𝑃′, 𝑃′′, … ) and (𝑄, 𝑄′, 𝑄′′, … ) shown in Fig. 5 are not similar. 
 

 
 

Fig. 5.  The spiral polygons {𝑃′, 𝑃′′, 𝑃′′′, … }, {𝑄′, 𝑄′′, 𝑄′′′, … } to different points 𝑃, 𝑄 ∈ 𝑐  
 and derived by iterated pedal mappings belong to different spiral transformations.  

 
The “contra-pedal curve” 𝑐’ of a given planar curve 𝑐 with respect to a pole 𝑂, see [10] and 
[23], is nothing but the pedal curve of the evolute 𝑐∗of 𝑐, see Fig. 6, where the pedal curves of 
an ellipse 𝑐 and its evolute 𝑐∗ is shown. 

 

 
 

Fig. 6.  The contra pedal curve of an ellipse 𝑐 is the pedal curve 𝑐∗′ of its evolute 𝑐∗. 
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4 The pedal-mapping revisited 

Let us, at first, look at the constructions shown in the previous chapters: The places of action 
are a real, projective enclosed affine plane or a projective plane with a Euclidean orthogonality 
concept. Furthermore, this Euclidean orthogonality concept can also be defined by the polarity 
of a circle. In the following we shall split these Euclidean approaches. 
 

 
 

Fig. 7.  The involutoric 𝛿-orthogonality in the pencil Λ at 𝑂 is completed via  
         a Steiner-circle s and the involution center 𝐼. With this 𝛿-orthogonality  
         follows the construction of the pedal curve 𝑐’ to a given curve 𝑐.  

 
a)  We start with a real affine plane, a curve 𝑐 and a pole 𝑂. Let 𝑡𝑃 be the tangent of 𝑐 at a point 
𝑃 ∈ 𝑐 and 𝑡𝑃̅ ∥ 𝑡𝑃 the parallel line through 𝑂. In the pencil Λ of lines through 𝑂 let an involutoric 
projectivity 𝛿 be given, e.g. the right-angle involution. Then 𝑡𝑃̅

𝛿 shall be defined as the 𝛿-normal 
to 𝑡𝑃, and its intersection with 𝑡𝑃 is the 𝛿-pedal point 𝑃’ to 𝑃. The graphic treatment will use 
a Steiner-circle 𝑠 through 𝑂 and an involution center 𝐼, (c.f. [3]), see Fig. 7. If 𝐼 is an inner point 
of 𝑠, the involution 𝛿 is elliptic and the affine plane 𝜋 together with the 𝛿-orthogonality is 
Euclidean, while it is pseudo-Euclidean, if 𝐼 is an exterior point of 𝑠.  
(Note that 𝛿 induces, via the ideal points of the lines of the 𝑂-pencil, an absolute involution in 
the ideal line of 𝜋, see [3]). 

 
For an analytic treatment we use 𝑂 as origin and describe 𝑐 by 𝑥⃗(𝑡) = (𝑥(𝑡), 𝑦(𝑡))𝑇, such that 
the direction vector of 𝑡𝑃 is 𝑥́⃗(𝑡) = (𝑥̇(𝑡), 𝑦̇(𝑡))𝑇. An involution 𝛿 of the lines through 𝑂 is 
described by a special regular 2 x 2 - matrix 𝑀 = (𝑚𝑖𝑗), such that the direction vector of 𝑡𝑃̅

𝛿 is 
𝑀𝑥́⃗(𝑡). 

 
As in Chapter 1 we use homogeneous coordinates in 𝜋 and the convenient formal cross-product 
to calculate the coordinates of the pedal point 𝑃′(𝑡) to 𝑃(𝑡): 
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With 
 

 𝑀 = (
𝑚11 𝑚12

𝑚21 𝑚22
) =: (

𝑚⃗⃗⃗1

𝑚⃗⃗⃗2
), 𝑡𝑃 =̂ (|

𝑥 𝑦
𝑥̇ 𝑦̇| , −𝑦̇, 𝑥̇) ℝ , 𝑡𝑃̅

𝛿 =̂ (0,   𝑚⃗⃗⃗⃗⃗⃗ 1 ∙ 𝑥́⃗,  𝑚⃗⃗⃗2 ∙ 𝑥́⃗ )ℝ  (3) 

 
the intersection 𝑃’ = 𝑡𝑃 ∩ 𝑡𝑃̅

𝛿   is  
 

𝑃′ =̂ (
−𝑚11𝑥̇2 − (𝑚12 + 𝑚21)𝑥̇𝑦̇ − 𝑚22𝑦̇2

−(𝑥𝑦̇ − 𝑦𝑥̇)(𝑚21𝑥̇ + 𝑚22𝑦̇)
(𝑥𝑦̇ − 𝑦𝑥̇)(𝑚11𝑥̇ + 𝑚12𝑦̇)

) ℝ  .   (4) 

 
A regular matrix M describes, in general, a projectivity 𝛿 (different from an involution) in the 
ideal line of 𝜋, resp. in the line-pencil with vertex 𝑂 and it can be used to define a non-
symmetric orthogonality in 𝜋. Therewith we can formulate: 

 
Generalization 1. Given a regular curve 𝑐 in an affine plane 𝜋, a pole 𝑂 and a projectivity 𝛿 in 
the line-pencil at 𝑂 to define a 𝛿-orthogonality in 𝜋, then the pedal construction with this 
orthogonality delivers a 𝛿-pedal curve 𝑐’ to 𝑐. 

 

 
 

Fig. 8.  Some pseudo-evolutes of an ellipse. 
 

Remark 2. If 𝑀 describes a Euclidean rotation 𝛿, then the 𝛿-normals enclose a fixed angle 𝛼 
with the tangents 𝑡𝑃 of 𝑐. Especially the 𝛿-normal at 𝑃 ∈ 𝑐 envelops a so-called “pseudo-
evolute” or “evolutoid” (c.f. [24, p. 241], [7], [8]), see Fig. 8. Obviously, the pedal construction 
delivers now an 𝛼-pedal curve as well as an 𝛼-contra-pedal curve, see Fig. 9a, b. Here it seems 
advisable to distinguish the “ortho-pedal points (curves)” from the “iso-pedal points (curves)”. 
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Fig. 9.  a) Ortho-pedal curve 𝑐’ and iso-pedal curves 𝑐𝛼𝑖 of an ellipse 𝑐, 
  b) ortho-pedal curves 𝑐𝛼𝑖

∗′  of the pseudo-evolutes 𝑐𝛼𝑖
∗  of this ellipse 𝑐. 

 
Let 𝑃’ ∈ 𝑡𝑃 be the ortho-pedal point to 𝑃 ∈ 𝑐 and 𝑄’ the ortho-pedal point to 𝑄 ∈ 𝑡𝛼

𝛿  of the 
pseudo-evolute 𝑐𝛼

𝛿, then 𝑂𝑃′ ∩ 𝑡𝛼
𝛿 =: 𝑄𝛼

′  is the iso-pedal point of 𝑄 ∈ 𝑐𝛼
𝛿, and, vice versa, 

𝑂𝑄𝛼
′ ∩ 𝑡𝑃 =: 𝑃𝛼

′ is the iso-pedal point of 𝑃 ∈ 𝑐. Obviously, the four points 𝑃′, 𝑃𝛼
′ , 𝑄′, 𝑄𝛼

′  are 
concyclic, see Fig. 10. 

 

 
 

Fig. 10.  Ortho- and iso-pedal points of a curve 𝑐 and its pseudo-evolute 𝑐𝛼𝑖
∗   

 form a concyclic quadrangle. 
 

b) We generalize the polarity we used to get the point 𝑃∗ to 𝑡𝑃, see Fig. 2, to a general 
correlation 𝜅, but we replace the construction of 𝑃’ via an inversion simply by intersecting 𝑡𝑃 
with the line 𝑂𝑃∗. Obviously, the place of action now is the real projective plane 𝜋. This results 
in 

 
Generalization 2. Given a regular curve 𝑐 in a real projective plane 𝜋, a pole 𝑂 and a regular 
correlation 𝜅: 𝑙 ⟼ 𝐿∗ of lines to points in 𝜋. Therewith it is possible to define a (in general not 
symmetric) 𝜅-orthogonality of lines 𝑙 ∈ 𝜋  to lines 𝑂𝑃∗ and use this to construct a 𝜅-pedal curve 
𝑐’ to a given curve 𝑐. 
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5 The pedal-mapping in higher dimensions 

a) A well-known 3D-version of the pedal construction uses the Euclidean 3-space as place of 
action, a regular surface Φ, and a pole 𝑂. The pedal point 𝑃’ to a regular point 𝑃 ∈ Φ is defined 
as the intersection of the tangent plane 𝜏𝑃 at 𝑃 with the normal 𝑛 ⊥ 𝜏𝑃 through 𝑂. All properties 
of the basic 2D-situation, (e.g. the construction via polarity and inversion), can be directly 
transferred to this 3D-case. It is obvious that this pedal mapping and its properties can be 
transferred to any Euclidean 𝑛-space. But also the Generalizations 1 and 2 can easily be 
reformulated for real affine and projective 𝑛-spaces.  

 
b) Seemingly less considered is the case of a regular curve 𝑐 in the Euclidean 3-space. We 
formulate the generalizations of pedal constructions related to 𝑐 and a pole 𝑂 as 
  
Generalization 3. At a point 𝑃(𝑢) ∈ 𝑐 we consider the Frenet-frame consisting of the tangent 
𝑡𝑃, the main normal 𝑛𝑃 and the binormal 𝑏𝑃. In addition, we shall consider the osculating plane 
𝜎𝑃 = 𝑡𝑃 ∨ 𝑛𝑃, the normal plane 𝜈𝑃 = 𝑏𝑃 ∨ 𝑛𝑃, and the rectifying plane 𝜌𝑃 = 𝑡𝑃 ∨ 𝑏𝑃. Let now 
a pole 𝑂 be given, then we can construct 6 Frenet-frame pedal points 𝑇𝑡

′(𝑢), 𝑁𝑛
′ (𝑢),

𝐵𝑏
′ (𝑢),  𝑆𝜎

′ (𝑢),  𝑄𝜈
′ (𝑢),  𝑅𝜚

′ (𝑢) to a point 𝑃(𝑢) ∈ 𝑐, by intersecting the corresponding lines and 
planes of the Frenet frame with orthogonal elements through pole 𝑂. 
 
Remark 3. In Generalization 3 we mentioned special lines and planes along 𝑐, but the essence 
is that c and its special line/plane sets can be replaced by any one-parametric set of lines or 
planes. Furthermore, we can start with an affine 3-space and define a 𝛿-orthogonality by 
a regular correlation in the bundle of lines and planes through pole O, or, what means the same, 
an absolute 𝛿-correlation in the ideal plane of the 3-space. This allows extending Generalization 
3 to a 3D-version of Generalization 1. We leave the extension to higher dimensions to the 
reader.  
 
Like for Generalization 2, we start with a real projective 3-space Π and a correlation 𝜅 in Π to 
define a 𝜅-orthogonality structure for a pedal construction:  
   
Generalization 4. Given a continuous one-parameter set of lines 𝑡 or planes 𝜎 resp. a regular 
surface Φ, a pole 𝑂 and a correlation 𝜅 in the real projective 3-space Π. Let 𝑃∗ be the 𝜅-image 
of the plane 𝜎 of 𝑐 resp. of the tangent plane 𝜏𝑃 of Φ at a point 𝑃, then the 𝜅-pedal point 𝑃’ to 
𝜎, 𝜏𝑃  is the intersection of these planes with the line 𝑂𝑃∗. For a line 𝑡 and 𝑡∗ = 𝜅(𝑡), the 
𝜅-pedal point 𝑃’ to 𝑡 is the intersection of the plane 𝑂 ∨ 𝑡∗ with the line 𝑡. 
 
6 A pedal-mapping in the line space of a 3-space 

a) We extend the pole 𝑂 of the former chapters to a line 𝑜, which we take as the polar line of 
a pedal construction. Let us, at first, start with a projective enclosed Euclidean 3-space and its 
Euclidean orthogonality ⊥. (Concerning Euclidean line geometry consider e.g. [17], [22].) 
Based on the construction of the common perpendicular of two lines we formulate 

 
Generalization 5. Given a set of lines {𝑙𝑖} in the projective enclosed Euclidean 3-space and 
a polar line 𝑜. The pedal point 𝐿𝑖 of a line 𝑙𝑖 is defined as the intersection point of 𝑙𝑖 with the 
common perpendicular 𝑛𝑖 of 𝑜 and 𝑙𝑖. 
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We apply this proposal to the special elliptic line congruence ℒ2 consisting of the left Clifford-
parallels of a line 𝑧. We can consider this congruence as a set of reguli ℛ1Φ(𝑟) of coaxial and 
concentric hyperboloids of rotation Φ(r), and with common imaginary vertices at 𝑧,  but also 
as a set of reguli ℛ1Ψ(𝛼) of orthogonal hyperbolic paraboloids Ψ(𝛼) with common vertex 𝑍 
and common vertex generator 𝑧.  We use a Cartesian frame with origin 𝑍 and 𝑧 as the third axis, 
and we consider a generator 𝑙 = 𝑃𝑄 with 

𝑃 = 𝑟(sin 𝛼 , cos 𝛼, 0)𝑇 , 𝑄 = 𝑃 + 𝑟(sin 𝛼 , −cos 𝛼 , 1 𝑟)𝑇⁄ , see Fig. 11. 
 

 
Fig. 11.  Top-view image of 𝑜 ∥ 𝑧 and of a generator 𝑙(𝑟, 𝛼) of the special  

             elliptic line congruence ℒ2 and construction of the pedal point 𝐿 of 𝑙. 
 

The polar line 𝑜 ∥ 𝑧 shall pass through 𝑂 = (𝑎, 0,0)𝑇. For the top-view image 𝐿’ of the pedal 
point 𝐿 of 𝑙 we find 𝑃𝐿′̅̅ ̅̅ = 𝑎 sin 𝛼 , see Fig. 11. Therewith, 𝐿 is the point  

 

𝐿(𝑟, 𝛼) = 𝑟 (
cos 𝛼
sin 𝛼

0
) + 𝑎 sin 𝛼 (

sin 𝛼
− cos 𝛼

1 𝑟⁄
) .  (5) 

 
Keeping 𝛼 = 𝛼0 fixed, then (5) describes an equilateral hyperbola in a plane trough 𝑧 parallel 
to 𝑧 ∨ 𝑃(𝑟, 𝛼0), see Fig. 12a.  Keeping 𝑟 = 𝑟0 fixed, then (5) describes a rational curve  
𝑐 = {𝐿(𝑟0, 𝛼)} on a hyperboloid of rotation Φ(𝑟0), see Fig. 12b. It is the pedal curve to the 
regulus ℛ1Φ(𝑟0). In rational homogeneous coordinates it is the curve  

 
𝑐 = (𝑟0(1 + 𝑡2)2, 𝑟0

2(1 − 𝑡4) + 4𝑎𝑟0𝑡2, 2𝑟0
2(𝑡 + 𝑡3) − 2𝑎𝑟0(𝑡 − 𝑡3), 2𝑎𝑟0(𝑡 + 𝑡3)ℝ    (6) 

 
of degree 4 and Type II, i.e. a curve with the second regulus ℛ2Φ(𝑟0) of  Φ(𝑟0) as its tri-secants.  
Unexpectedly, the surface formed by the pedal points 𝐿(𝑟, 𝛼) of all lines of the special elliptic 
line congruence is of degree 3. In cartesian coordinates it has the equation 

 
𝑧(𝑥2 + 𝑦2) − 𝑎(𝑥𝑧 + 𝑦) = 0 . (7) 

 
In Fig. 12b (top and front view projection) we show this pedal construction for a regulus 
ℛ1Φ(𝑟0) of hyperboloid of rotation Φ(𝑟0)   and with 𝑜 parallel to its axis. 
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Fig. 12.  a) Pedal point hyperbola 𝑐(𝛼𝑜) for lines of the regulus  ℛ1Ψ(𝛼0)  
of an orthogonal paraboloid of lines 𝑙 ∈ ℒ2,    

 b) Pedal point curve 𝑐 of degree 4 to the regulus ℛ1Φ(𝑟𝑜)  
of lines 𝑙 ∈ ℒ2 of a hyperboloid of rotation. 

 
Remark 4.  Obviously, this procedure can be applied to any line set of dimension 1, 2 or even 
3. In the latter case it results in a 3D-domain of pedal points. We omit here the discussion of 
exceptional lines and objects as well as of non-Euclidean geometries. We shall meet at least the 
pseudo-Euclidean orthogonality in Chapter 7. 

 
Remark 5.  It could also be of interest to translate the pedal procedure to F. Klein’s point model 

of the line space which is a regular hyperquadric 𝑀4
2 of index 2 in the real projective 5-space. 

Euclidean orthogonality of the original 3-space translates to the polar system of hypercone 𝑁4
2 

with its 2-dimensional vertex in 𝑀4
2. For references see e.g. [17], [22].  

 
In higher dimensional Euclidean spaces we have the possibility to increase the dimension of 
the polar space. Here we cannot expect essentially new information about the resulting pedal 
point sets. Here we can therefore omit further discussions. 

 
b) As another externally given orthogonality concept we might still use a regular correlation 𝜅. 
We demand that it transforms the polar line 𝑜 to a skew line 𝑜∗ =  𝜅(𝑜) and each plane 𝜉 to 
a point 𝑋∗ = 𝜅(𝜉), and a line 𝑙, in general, to a skew line 𝑙∗ = 𝜅(𝑙). A modified pedal 
construction could be 

 
Generalization 6. Given a polar line 𝑜 and a regular correlation 𝜅, then the pedal point 𝑋′ of 
a plane 𝜉 is the intersection of 𝜉 with a line 𝑛𝜉  through 𝑋∗ = 𝜅(𝜉) meeting 𝑜 and 𝑜∗ =  𝜅(𝑜). 
Similarly, for a line 𝑙 we get, in algebraic sense, a pair of pedal points, namely the intersections 
of 𝑙 with the (in general two) lines 𝑛𝑙,1, 𝑛𝑙,2 meeting the (in general) four lines 𝑜, 𝑜∗, 𝑙, 𝑙∗. 
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To treat pedal constructions in the line-space, one could also use the polar system 𝜅 of a sphere 
Ω in the projective enclosed Euclidean 3-space. This allows to consider Ω, on one hand, as the 
absolute quadric of a hyperbolic space, similar as the 2-dimensional case and shown in Fig. 3, 
and on the other hand, an interpretation of Ω could be that of the Riemann sphere of the Möbius’ 

circle geometry, what leads us to the next chapter. 

 
7 Pedal-constructions in Euclidean circle geometries 

We shall consider here Möbius’ circle geometry and Laguerre’s cycle geometry and connect 

the first one to the polar system 𝜔 of the Riemann sphere Ω in the Euclidean 3-space, while we 
interpret the second one as the cyclographic image of a 3-space, which is endowed with 
a pseudo-Euclidean metric, c.f. [16]. (Nevertheless, we have also the possibility to endow this 
pseudo-Euclidean space, in addition, with the Euclidean orthogonality.)  While in the Möbius 

case a line 𝑙, via stereographic projection of Ω, maps to a pencil of circles through, in algebraic 
sense, two points, it is mapped via cyclographic projection to a linear set of cycles touching, in 
algebraic sense, two oriented lines, so-called spears. Roughly speaking, there is sort of a duality 
from one case to the other. (Concerning circle geometries consider e.g.  [Ben].) 

a)  Pedal point construction in the Möbius plane 
Given a pole 𝑂 and a line 𝑙 in the Euclidean 3-space, we aim at translating the construction of 
the pedal point 𝐿 of a line 𝑙 in space into a procedure for Möbius circles. Thereby we use the 

polar system 𝜔 to a sphere Ω, and the stereographic projection 𝜎 of Ω to the Möbius plane. A 

point 𝑋 is mapped to a plane 𝜉 = 𝑋𝜔, and 𝜎 maps the intersection Ω ∩ ξ to a real, imaginary or 
degenerate Möbius circle 𝑋𝑀, according 𝑋 is an exterior or interior point, or a point of Ω. A 
line 𝑙 with only exterior points of Ω is mapped to a pencil of planes through the line 𝑙𝜔 ⊥ 𝑙, 
which intersects Ω in two points 𝐹1, 𝐹2, and all points 𝑋 ∈ 𝑙 are finally mapped to real circles 
𝑋𝑀 of an elliptic pencil with fixed points 𝐹1

𝑀, 𝐹2
𝑀. All exterior points 𝑌 ∈ 𝑙𝜔 are mapped to real 

circles 𝑌𝑀 of a hyperbolic pencil with degenerate circles 𝐹1
𝑀, 𝐹2

𝑀. The inner points 𝑌 ∈ 𝑙𝜔 have 
imaginary circles (of this pencil) as Möbius images. The circles 𝑌𝑀 intersect all 𝑋𝑀 
orthogonally.  
 
Now to the pedal construction: From the former chapter 6b) follows that the 𝜔-normal 𝑝 ∋ 𝑂 
to 𝑙 also intersects 𝑙𝜔 =: 𝑙.̅ Therefore, 𝑝𝑀 is a pencil of circles containing the solution circle 
𝐿𝑀 ∈ 𝑙𝑀 and a circle 𝐿̅𝑀 ∈ 𝑙𝑀̅. Note that these three circles must have a common cord. We 
formulate at first an obvious  
 

Corollary. The common cords of a fixed circle 𝑂𝑀and the circles 𝑋𝑀 of a pencil form a pencil 
of lines. The common point 𝑌 of these cords is a point of the common 𝑦 cord of all 𝑋𝑀. 
 
The trivial proof applies the property of the power of a point with respect to a circle and can be 
read off from Fig. 13.  
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Fig. 13.  The power of point 𝑌 ∈ 𝑦 with respect to circles 𝑂𝑀 , 𝑋𝑖
𝑀 is constant 

 
In application of this corollary we find a point 𝑌 on the common cord of 𝑙𝑀 and a point 𝑋 on 
the common cord of 𝑙𝑀̅.  The line 𝑋𝑌 is the common cord of 𝑜𝑀 and the solution circles 𝐿𝑀 ∈
𝑙𝑀, 𝐿̅𝑀 ∈ 𝑙𝑀̅. Thereby one of these solution circles can be imaginary, see Fig. 14a, b. 
 

        
 

Fig. 14 a) and b).  Construction in the Möbius plane of the Möbius images  
  of the pedal points 𝐿 ∈ 𝑙,𝐿̅ ∈ 𝑙 ̅(𝑙 ̅ = 𝑙𝜔) with respect to a point 𝑂.  
  (left: 𝐿𝑀 real, 𝐿̅𝑀imaginary, right: 𝐿𝑀and 𝐿̅𝑀 real). 

 
This basic construction can now be applied to sets of lines 𝑙, and, if we replace the pole 𝑂 by 
a polar line 𝑜.   
 
b) Pedal point construction in the Laguerre plane 
The Laguerre plane consists of the set of cycles 𝑥𝑧, i.e. the set of oriented Euclidean circles and 
points of the Euclidean plane 𝜋, and of the set of spears 𝑡𝑧, i.e. the oriented lines of this plane. 
Each cycle 𝑥𝑧 is described by the (cartesian) coordinate (𝑥, 𝑦) of its center and its signed radius 
𝑧 and can be interpreted as the “cyclographic image” of a point 𝑋 = (𝑥, 𝑦, 𝑧) in space. One can 
say that 𝑥𝑧 is the (oriented) trace of the right cone with vertex 𝑋 and apex angle 𝜋 2⁄ , while 
a spear 𝑡𝑧 stems of one of the planes through 𝑡𝑧 with slope angle 𝜋 4⁄ . A spear 𝑡𝑧 touches a 
cycle 𝑥𝑧 , if the line of 𝑡𝑧 touches the circle of 𝑥𝑧and the orientations at the touching point are 
the same. The (real or imaginary) tangential distance  𝑎𝑧 , 𝑏𝑧̅̅ ̅̅ ̅̅ ̅̅ = 𝑑𝑎𝑏 calculates as  
 

𝑑𝑎𝑏 = √(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2 − (𝑧𝑏 − 𝑧𝑎)2 ,   (8) 
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and this induces a pseudo-Euclidean metric in the so-called pe-space, see [16]. The 
orthogonality is ruled by the polarity 𝜔 of a real “absolute circle” 𝑐 in the ideal plane of the pe-
space. Therefore, it is common use to speak of “𝑐-geometry” with space-like, time-like and 
light-like slopes with respect to plane 𝜋. For references see e.g. [11] and [16].  A linear set of 
cycles is spanned by two cycles  𝑎𝑧 , 𝑏𝑧 and consists of all cycles 𝑥𝑧 with the same (unique!) 
similarity center of 𝑥𝑧 , 𝑏𝑧 as that of 𝑎𝑧 , 𝑏𝑧.  They are therefore the cyclographic image of a line 
𝑙 in space.  
 
According Result 1 the pedal point construction will work in this special Cayley-Klein space. 
In addition, we might endow the space with a Euclidean metric, too, and solve the problem of 
finding the pedal point 𝐿 on a line 𝑙 with respect to a pole 𝑂 ∉ 𝜋 via the cyclographic mapping 
and the central projection with center 𝑂, see Fig. 15. 
 

 

Fig. 15.  The cyclographic images of the pedal point constructions in the 𝑝𝑒-space and 
in the Euclidean space (dashed lines) via central projection with pole O as center. 

 
Replacing 𝑂 by a line 𝑜 ⊥  𝜋 according to the former chapter 6 we can construct the pedal 
cycles 𝐿𝑧(𝛼) of a regulus ℛ1Φ(𝑟0) of a “𝑐-sphere” Φ(𝑟0), i.e. a hyperboloid of revolution 
intersecting the ideal plane in the absolute circle 𝑐. Note that, for 𝑜 ⊥  𝜋, Euclidean 
orthogonality is the same as 𝑝𝑒-orthogonality. Fig. 16 shows the cyclographic image of the 
curve shown in Fig. 12b. The two arcs of the envelop of the resulting cycles belong to one 
algebraic curve, which is related to a nephroid. 
 
We collect the procedures performed in this chapter as 
 
Generalization 7. The classical pedal point constructions with respect to a pole 𝑂 or a polar 
line 𝑜 can be translated and modified to pedal circle constructions in the Euclidean Möbius and 

to pedal cycle constructions in the Euclidean Laguerre plane. 
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Fig. 16.  Cyclographic image of the pedal curve c of Fig. 12b. 

 
8 Pedal-constructions in affine planes with Minkowski-metric 

A Minkowski plane is a real affine plane with a norm defined by a centrally symmetric, convex 
curve as “unit circle” 𝑐𝑀. In the following we demand that 𝑐𝑀 is strictly convex and smooth. 
For Minkowski planes there exist many different orthogonality concepts. A purely of 𝑐𝑀 
induced is the nonsymmetric Birkhoff-orthogonality. Let 𝑃 be a point of 𝑐𝑀, then the tangent 
𝑡𝑃 at 𝑃 is left-orthogonal to the radius 𝑂𝑃. For short, 𝑂𝑃 ┤𝑡𝑃, and 𝑡𝑃├ 𝑂𝑃 symbolizes right-
orthogonal elements. For references see [20].  
 
When one applies the pedal curve construction to 𝑐𝑀 for the center 𝑂 as pole, it is obvious that 
𝑐𝑀 = 𝑐𝑀

′ . Therefore, we can call 𝑐𝑀 an “autopedal curve” with respect to pole 𝑂. Fig. 17a,b 
show the construction of the pedal curves 𝑐’ to given curves 𝑐 with respect to a pole 𝑂 being 
the center of the Minkowski unit circle 𝑐𝑀. Based on the Birkhoff-left-orthogonality defined by 
𝑐𝑀 the Minkowski-evolutes 𝑐∗ and, in Fig. 17b, also the pedal curve 𝑐∗′ of 𝑐∗ are depicted. 
 

      
  

Fig. 17a, b.  Minkowski pedal curve 𝑐′ of a curve 𝑐 based on 
Birkhoff-orthogonality with autopedal Minkowski unit-circle 𝑐𝑀 . 
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One might also extend this construction principle to higher dimensions replacing the Euclidean 
unit-hypersphere by a strictly convex and smooth Minkowski unit-ball resp. unit-hyperball. For 
the planar case we formulate 
 
Generalization 8. The classical pedal point constructions with respect to a pole 𝑂 can directly 
be transferred to Minklowski-normed planes with a strictly convex and smooth Minkowski 
unit-circle 𝑐𝑀. Thereby, for a constructive treatment, e.g. Birkhoff left-orthogonality based on 
𝑐𝑀 replaces Euclidean orthogonality.  
 
9 Pedal-constructions with intrinsically defined orthogonality 

The construction principle presented in Chapter 8 seems closely related to an idea originally 
presented by Emil Müller in his “Lectures on Descriptive Geometry”, namely the “relative 

differential geometry of curves and surfaces”, see [15]. For further and actual references see 

e.g. [13]. In the following we shall consider two planar cases of orthogonality concepts, which 
are, more or less, intrinsically defined by the given curve 𝑐:   

 
a) Relative geometric pedal curve construction 
Let a 𝐶2-smooth curve 𝑐 in the real affine plane 𝜋 be given together with a vector field 𝑉𝑐 along 
with 𝑐, as well as a pole 𝑂. When translating the vectors 𝑛⃗⃗𝑃 ∈ 𝑉𝑐 to point 𝑂, the tangent vectors 
𝑡𝑃 of 𝑐 induce a transversal parallel field along each line 𝑛𝑃,𝑂 of the pencil {𝑛𝑃,𝑂}. Integrating 
this transversal field for a chosen starting point 𝑄 ∈ 𝑛𝑃0,𝑂 gives a curve 𝑐𝑅, which can be taken 
as a “relative unit-circle”. With this relative unit-circle the construction of a pedal curve 𝑐’ to 𝑐 
with respect to 𝑂 and the given relative normal field can be performed like that for Minkowski 
planes. The only difference between the relative geometric case and the Minkowski geometric 
case is that 𝑐𝑅 neither needs to be centrally symmetric nor 𝑂 needs to be the center of an 
eventually symmetric curve 𝑐𝑅. Fig. 18 shows an example of a relative geometric pedal curve 
construction with 𝑐𝑅 an arc of a parabola and the curve 𝑐 as a Euclidean circle. Note that the 
relative orthogonality is not symmetric, see the construction of the contra-pedal point 𝑃∗′ of 𝑃 
in Fig. 18. 

 
 

Fig. 18.  Pedal point/curve and contra-pedal point construction with respect to  
      a relative geometric orthogonality defined by the relative evolute 𝑐∗ of 𝑐, 
      leading to a relative unit arc 𝑐𝑅 at pole 𝑂.   
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b) Pedal curve construction based on affine normals of a curve 

A typical intrinsically defined orthogonality can be based on the affine normal field along 
a curve 𝑐 in the affine plane 𝜋. With respect to affine transformations, the resulting pedal curve 
𝑐’ is even invariantly connected with the pair (𝑐, 𝑂). For references concerning Affine 
Differential Geometry see e.g. [18], [19]. We refrain here from a Figure, as the procedure is 
already described in the former part of this chapter. 

 
Generalization 9. The construction of the pedal curve 𝑐’ to a given pair (curve 𝑐, pole 𝑂) can 
be based on an orthogonality intrinsically connected with 𝑐, as e.g. a relative normal field or, 
especially, the affine normal field along 𝑐.  

 
Obviously, it is possible to perform pedal point and pedal surface constructions also in the real 
affine space for a given triplet (surface Φ, relative normal field 𝑉Φ, pole 𝑂). A given surface 
Φ allows a special set of intrinsically defined relative normal vector fields 𝑉Φ, see e.g. [13]. 
 
 

10 Replacing the pole 𝑶 by a curve 𝒐: orthoptics and isoptics.  
We restrict the considerations to the Euclidean plane 𝜋 and replace the pole 𝑂 by a regular 
curve 𝑜. Given a regular curve 𝑐, its pedal curve 𝑐’ is the set of intersection points 𝑃’ of tangent  
𝑡𝑃 at a point 𝑃 ∈ 𝑐 with all tangents 𝑡𝑜 ⊥ 𝑡𝑃 of 𝑜. This means that 𝑐’ is the “orthoptic” of the 

pair (𝑐, 𝑜). When we, according to Generalization 2, replace the right angle by a constant 
𝛼 = ∠𝑡𝑃𝑡𝑜, we receive a curve 𝑐𝛼

′ , which now acts as “isoptic” of the pair (𝑐, 𝑜). We mention 
this as 

 
Generalization 10. Orthoptics of pairs of two curves c and o can be seen as ortho-pedal curves 
of the pair (𝑐, 𝑜), while isoptics of such a pair of curves are their 𝛼-pedal curve. 

 
For orthoptics and isoptics there are many references, see e.g. see e.g. [14], [23], [26].                
Fig. 19a, b and Fig.20a, b show both types of such curves for rather simple pairs (𝑐, 𝑜). 

  

         
 

Fig. 19a, b.  The orthoptics 𝑐′, 𝑐̅′  and isoptics 𝑐𝛼
′ , 𝑐𝛼̅

′  of a pair of circles (𝑐, 𝑜). 
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Fig. 20a, b.  The orthoptics 𝑐′, 𝑐̅′ of a pair of ellipses and of parabolas (𝑐, 𝑜). 
 

How to adapt these planar constructions for orthogonal elements in space? Instead of a curve 𝑐 
we can take a surface Φ and instead of the tangents 𝑡𝑃 the set of tangent planes 𝜏𝑃 in the points 
𝑃 ∈ Φ. In the plane we replaced the pencil of lines 𝑛 ∋ 𝑂 by the (one-dimensional) set ℒ1 of 
tangents of a curve 𝑜. Therefore, we should use a two-dimensional set of lines ℒ2 in space and 
look for the lines 𝑛 ∈ ℒ2 orthogonal to each of the planes 𝜏𝑃. The pedal point 𝑃’ of 𝜏𝑃 is then 
its intersection with 𝑛. The set ℒ2 is called “line congruence”. It can be defined as the set of 

common tangents of two surfaces or the set of lines intersecting two curves or mixed. Especially 
linear line congruences meet, in algebraic sense, two lines, and we considered already the very 
special congruence ℒ2 with rotational symmetry in chapter 6. Extending Generalization 10 to 
higher dimensions we can formulate 
 
Generalization 11. A way to adapt the planar orthoptic for a construction in space is to intersect 
the tangent planes of a surface Φ with orthogonal lines out of a line congruence ℒ2. For adapting 
it to an 𝑛-space, the tangent hyperplanes of a hyper-surface had to be intersected with 
orthogonal lines of an (𝑛 − 1)-dimensional set ℒ𝑛−1 of lines. 
 
We finish this chapter with the construction of the pedal points 𝑃𝜏 of the tangent planes 𝜏𝑃 of 
a sphere Φ with respect to the special linear line congruence ℒ2 having rotational symmetry (as 
used in the Fig. 11, 12a, b), see Fig. 21.  
 
For a fixed angle 𝛼0, i.e. a chosen meridian 𝑚(α0) ∈ Φ, we must intersect a cylinder of 
revolution Γ(α0) with an orthogonal hyperbolic paraboloid Ψ(𝛼0), whereof one vertex 
generator coincides with the axis of Γ(α0).  
 
The short calculation for a sphere Φ with radius 𝑟 and centered in the origin 𝑍, and the special 
line congruence ℒ2 with 𝑧 as rotation axis and centered in 𝑍, delivers the equation of the pedal 
surface Φℒ2

′  as 
 

Φℒ2
′ …  𝑧2(𝑥2 + 𝑦2 + 𝑧2 − 𝑟2 + 1) − 𝑟2 = 0 .    (9) 

 
The top view 𝑐’ of the pedal curve 𝑐 = Γ(α0) ∩ Ψ(𝛼0) , see Fig. 21, and for  𝛼0 = 𝜋 2⁄  is 
described by 
 

𝑥2(𝑦2 + 1) = 𝑟2𝑦2 .     (10) 
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Fig. 21.  Pedal curve 𝑐 for tangent planes 𝜏𝑃 along a meridian 𝑚 of a sphere Φ  
 with respect to a special elliptic linear line congruence ℒ2. 

 
 

11 Final remark and conclusion 
 

The presented material of generalizations of the classical pedal curve construction shall shows 
strategies and possibilities, how to generalize a mathematical topic: increasing the dimension 
and/or changing of the key structure of the place of action. Most of the 11 generalizations 
mentioned above can be used as exercise material for research topics for their own, like e.g. 
non-Euclidean kinematics, circle geometries, line geometry, and relative and affine differential 
geometry. As it would extend the paper furthermore, we skipped here the dualization of the 
pedal point/curve construction, which, in some sense, connects the standard pedal construction 
to the topic of tractrices, see e.g. [28]. 
 
Here the treatment is kept at low level, such that it could be used also in undergraduate geometry 
and mathematics courses. Concerning the figures, which are made uniquely with the free 
graphics software Cinderella, one can at least see that simple descriptive geometry still is quite 
an effective research tool worthy to be kept alive.  
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Abstracts 

 

 

P. Salvi:  The curves of Eduard Lehr  

The class of curves whose curvature is a trigonometric function of the arc length has appeared 
multiple times in the last century, in different contexts. It was first studied by Eduard Lehr, in 
a relatively obscure work. Due to renewed interest in it within the field of aesthetic curves [8], 
we summarize its most important results in this paper. 

 

Š. Voráčová:  MST-based clustering for curve and surface reconstruction 

The Minimum Spanning Tree problem has been referenced in the literature as early as 1926, 
making it one of the oldest and most thoroughly studied problems in computational geometry. 
Alongside its enduring theoretical and algorithmic appeal, the MST is valuable for addressing 
numerous practical data analysis problems as well as image segmentation and reconstruction 
of the curve and surfaces. 
In this paper, we present curve and surface reconstruction methods using the Euclidean MST 
algorithm. The MST can help ensure that the reconstructed curve is efficient in terms of 
connectivity and distance.   

 

G. Weiss:  Pedal curves – a playground for generalizations 

Primarily the topic “pedal curves and surfaces” belongs to classical differential geometry in the 

Euclidean plane or space. One intersects the tangents of a curve 𝑐 with orthogonal lines of 

a pencil. Meanwhile, for this basic concept there exist incredible many modifications and 

generalizations, and it is widely used in undergraduate mathematics courses as an application 

of different parts of geometry and mathematics. Besides the didactical benefits of such an 

exercise material it might be worth pointing to a key strategies for geometric/ mathematical 

research, the generalization strategy and the unifying strategy. Here the projective geometric 

point of view seems very helpful. The paper tries to give an overview of existing generalizations 

and adds some additional ones. 
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